
Tutorial: Regional mapping of climate variables from point samples
Ordinary Least Squares trend
Generalized Least Squares trend
Regression Kriging
Kriging with External Drift
Generalized Additive Models trend
Data-driven methods: Regresion trees, Random Forests, Cubist
Thin-plate splines
Ordinary kriging, inverse-distance, Thiessen polygons

D G Rossiter
Cornell University, Section of Soil & Crop Sciences

ISRIC–World Soil Information

May 11, 2024

Contents

1 Introduction 1

2 Example dataset 2

3 Data exploration 3
3.1 Feature-space summary . 3
3.2 Station locations . 4
3.3 Postplots . 4
3.4 * Viewing in geographic context 9

4 Trend surface: a linear model solved by Ordinary Least Squares 11
4.1 Exploring the relation between predictors and predictand . . 11
4.2 OLS fit to the linear model 13

Version 6.1 Copyright © 2014-2019, 2024 D. G. Rossiter All rights reserved.
Reproduction and dissemination of the work as a whole (not parts) freely
permitted if this original copyright notice is included. Sale or placement on
a web site where payment must be made to access this document is strictly
prohibited. To adapt or translate please contact the author (d.g.rossiter@
cornell.edu).

d.g.rossiter@cornell.edu
d.g.rossiter@cornell.edu

4.3 Data cleaning . 15
4.4 Spatial correlation of OLS model residuals 19

4.4.1 The empirical variogram 21
4.4.2 Fitting an authorized variogram model 22

4.5 * Close-range anomalies . 23

5 Trend surface: a linear model fit by Generalized Least Squares 25
5.1 * GLS – theory . 25
5.2 GLS – practice . 28
5.3 Spatial correlation of GLS model residuals 31
5.4 * Fitting a GLS correlation structure with a nugget variance 33
5.5 Comparing OLS and GLS models 36

6 Prediction over the regional grid by OLS and GLS 38

7 Improving the trend prediction by Regression Kriging 42
7.1 * The Ordinary Kriging system 44
7.2 Predicting the residuals by Ordinary Kriging 45
7.3 The GLS-Regression Kriging prediction 48
7.4 Area of Applicability . 49

8 Kriging with external drift (KED) 52
8.1 * The Universal Kriging system 53
8.2 Computing the empirical residual variogram 54
8.3 Fitting the residual variogram model 55
8.4 Predicting with KED . 56
8.5 Accuracy assessment . 59
8.6 KED in a local neighbourhood 60
8.7 * Demonstration that KED uses GLS to determine the trend 64

9 Generalized Additive Models 66
9.1 Fitting a Generalized Additive Model 69
9.2 GAM prediction over the study area 75

10 Data-driven models 79
10.1 Regression trees . 80

10.1.1 Fitting a regression tree model 80
10.1.2 Regression tree prediction over the study area 89

10.2 Random forests . 90
10.2.1 Fitting a Random Forest model 91
10.2.2 Random Forest prediction over the study area 98

10.3 Tuning data-driven models 100
10.4 Cubist . 107
10.5 Additional covariables . 115
10.6 Models with the extended set of predictors 116

10.6.1 Relation among predictors 116
10.6.2 Random forest with additional covariables 119
10.6.3 Variable importance in the extended model 123

10.7 Shapley values . 124
10.7.1 *Theory . 125

ii

10.7.2 Practice . 125
10.7.3 Shapley Additive exPlanations (SHAP) 127

10.8 Extended vs. base model . 130

11 Thin-plate spline interpolation 131
11.1 * Theory . 131
11.2 Practice . 133

12 Local interpolators 136
12.1 Computing the empirical variogram 137
12.2 Fitting an authorized variogram model 139
12.3 Predicting by Ordinary Kriging 140

12.3.1 Accuracy assessment 142
12.4 Inverse-distance interpolation 145
12.5 Thiessen polygons . 147

12.5.1 Accuracy assessment 152

13 Comparing the spatial patterns of two climate variables 155
13.1 Choose a variable to compare with annual GDD50 157
13.2 Add the variable to compare 158
13.3 Standardize variables for comparison 158
13.4 Comparing variables with RK-GLS 160
13.5 Comparing variables with Random Forests 174

14 Answers 178

15 Challenge 185

References 187

A * Colour ramps with ggplot2 189

Index of R concepts 193

iii

循序渐进
“Advance step-by-step; slow but steady wins the race”

1 Introduction

This exercise presents various methods for regional mapping of climate vari-
ables from station information. The methods all relate to the universal
model of spatial distribution of a variable:

𝑍 (s) = 𝑍∗(s) + 𝜀(s) + 𝜀′(s) (1)

(s) : a location in space, designated by a vector of coördinates;

𝑍 (s) : true (unknown) value of some property at the location;

• when modelled, expressed as most likely value and some uncer-
tainty, or as a probability distribution

𝑍∗(s) : deterministic component, due to some known or modelled non-stochastic
process which operates over the entire region;

𝜀(s) : locally spatially-autocorrelated stochastic component;

𝜀′(s) : pure (“white”) noise, no structure.

In regional mapping, the deterministic component 𝑍∗(s) is called a trend,
and models of these are called trend surfaces.

The focus is on prediction by Regression Kriging with Generalized Least
Squares fitting of linear models (RK-GLS). This technique accounts for spa-
tial correlation among the residuals 𝜀(s) of the trend surface 𝑍∗(s), fitting
both together.

We contrast RK-GLS with predictions made by:

1. OLS trend surface;

2. GLS trend surface;

3. Kriging with External Drift (KED);

4. Data-driven (machine-learning) methods: Regression Trees, Random
Forests, Cubist;

5. Generalized Additive Models (GAM);

6. Thin-plate splines;

7. Local interpolators: Ordinary Kriging (OK), Inverse Distance Weight-
ing (IDW), Thiessen polygons.

This exercise also gives some practice in importing, manipulating, and veri-
fying a large dataset, and also gives some practice with the ggplot2, nlme,
sf, gstat, rpart, randomForest, ranger, Cubist, raster, plotKML and
fields R packages.

The exercise is organized as a set of discussions, tasks, R code to complete
the tasks, self-study questions (with answers) to test your understanding,

1

and a few challenges. §15 is an exercise to apply these techniques to a
different study area and/or a different climate variable.

Note: The source for this document is a text file that includes ordinary
LATEX source and “chunks” of R source code, using the Noweb1 syntax. The
formatted R source code, R text output, and R graphs in this document
were automatically generated and incorporated into a LATEX source file by
running the Noweb source document through R, using the knitr package
[30]. The LATEX source was then compiled by LATEX into the PDF you are
reading. The source code is provided in file MappingRegionalClimate.R.

2 Example dataset

In this tutorial we use agricultural climate as an example of a spatial points
dataset. The Northeast Regional Climate Center2 has kindly provided a set
of point ESRI shapefiles with various variables related to agricultural climate
measured from 1971-2000. This dataset was devloped by the Unifed Climate
Access Network (UVAN) network, and covers the entire United States of
America and its dependencies. It consists of several variables relevant for
agricultural climate: mean monthly and annual precipitation, mean monthly
and annual temperature, annual freeze free period base 32°F and 28°F3,
annual extreme minimum temperature, and monthly and annual growing
degree-days , base 50°F (relevant for C4 crops) and base 40°F (relevant for
C3 crops)4.

In this tutorial we use as an example growing degree-days, base 50°F5 (GDD50).

Note: Temperatures 𝑇 are expressed in °F in the USA, Bahamas, Belize,
the Cayman Islands, and Palau. The conversion is 1°C = (°F - 32) × (5/9).

These are defined for one day as [15]:

GDD50 = max ([(𝑇max + 𝑇min)/2] − 𝑇base, 0) (2)
where 𝑇base = 50.

For example, a day with maximum 86°F and minimum 60°F would account
for 146/2 − 50 = 23 GDD50. These are summed over some time period;
we will use the sum over the year, i.e., Annual GDD50. These heat units
are well-correlated with seasonal maize growth and are used to select maize
varieties on the basis of the number of GDD50 required to reach maturity.

The aim of all the methods in this tutorial is to predict GDD50 at an arbi-
trary location, using the records from the known stations, possibly also using
covariables that are available over the whole region: latitude, longitude and
elevation above sea level, as well as local spatial structure. While predict-
ing, we also can examine the predictive models to understand the causes for
Annual GDD50 spatial variation.
1 http://www.cs.tufts.edu/~nr/noweb/
2 http://www.nrcc.cornell.edu
3 -2.2 and 0°C
4 4.44 and 10°C, respectively
5 10°C

2

http://www.cs.tufts.edu/~nr/noweb/
http://www.nrcc.cornell.edu

In §13 we compare models and predictions of this variable with models and
predictions for others from the same dataset.

For the purposes of this tutorial, we have prepared the dataset of GDD50,
along with State boundaries and a set of environmental covariables associ-
ated with agricultural climate. If you are interested in how this was prepared,
for example if you want to apply this method for other agricultural climate
variables or in other regions of the USA, the details are in the related tuto-
rial, “Tutorial: Regional mapping of climate variables from point samples:
Data preparation”.

3 Data exploration

Task 1 : Load the “Simple Features” spatial geometry package to be used
in this and subsequent sections. •
require(sf)

Task 2 : Load the GDD50 dataset and supporting files. •

The load function is used to load R objects from an RData format file.
The save function stores the object name(s) along with the object(s), so
that after load, there are new objects in the workspace, with these names.
Setting the optional verbose argument to load shows the objects that were
loaded from the RData format file.
load(file="./StationsDEM_covariates.RData", verbose=TRUE)

Loading objects:
ne
ne.m
ne.df
state.ne
state.ne.m
dem.ne.m.sf
dem.ne.m.df
dem.ne4.m
ne.crs

3.1 Feature-space summary

Task 3 : Summarize the coördinates elevations and annual GDD50, so we
know the range of values we will use in the analysis. •
summary(ne.df[,c("E", "N", "ANN_GDD50","ELEVATION_")])

E N ANN_GDD50 ELEVATION_
Min. :-375745 Min. :-393923 Min. : 795 Min. : 5.0
1st Qu.:-156768 1st Qu.:-208100 1st Qu.:2100 1st Qu.: 330.0
Median : 47130 Median :-105357 Median :2463 Median : 711.0
Mean : 3231 Mean : -77213 Mean :2518 Mean : 799.7
3rd Qu.: 151648 3rd Qu.: 36720 3rd Qu.:2930 3rd Qu.:1160.0
Max. : 318960 Max. : 276614 Max. :4021 Max. :3950.0

The stations go from almost at sea level up to more than 4 000’ (1 220 m.a.s.l.).
The maximum annual GDD50 is more than five times the minimum. So in

3

both we have a good range to find statistical relations.

3.2 Station locations

Task 4 : Display the locations of the weather stations. •

We use base graphics for this. The coördinates of the sf object are a two-
dimensional array, so this is a scatterplot, also called “x-y plot”, with the
axes being the coördinates. The generic plot method, when given a two-
dimensional matrix, calls the internal function plot.xy. Colours are from
the default palette6, according to the level number of the factor. These are
in alphabetic sort order, so NJ has colour 1 (black), NY has colour 2 (red),
etc. We also use the labels argument to the text function to display the
first four characters of the station name.

We then can add the state boundaries to help visualize the study area.

The boundary lines are extracted from the polygons with the st_cast method,
that “casts” (a computer science term) one data type into another, in this
case from a MULTIPOLYGON to a "MULTILINESTRING", and then reduced to
only the geometry, i.e., removing the attributes such as State ID and name,
with the st_geometry method.

Here the plot function has an extra argument, add, specifying that we are
adding to a plot, not starting a new one. The col argument specifies the line
colour, and the lwd “line width” argument specifies how much the default
line width should be expanded or contracted. The result is Fig. 1.
unique(st_geometry_type(state.ne.m))

[1] MULTIPOLYGON
18 Levels: GEOMETRY POINT LINESTRING POLYGON ... TRIANGLE

state.ne.m.boundary <- st_geometry(st_cast(state.ne.m, "MULTILINESTRING"))
unique(st_geometry_type(state.ne.m.boundary))

[1] MULTILINESTRING
18 Levels: GEOMETRY POINT LINESTRING POLYGON ... TRIANGLE

plot(st_coordinates(ne.m), asp=1, xlab="E", ylab="N", pch=20)
text(st_coordinates(ne.m),

labels=substr(ne.m$STATION_NA, 1, 4), cex=0.5,
pos=2, col=as.numeric(ne.m$STATE))

plot(state.ne.m.boundary, add=TRUE, col="darkgray", lwd=2, sf_max.plot = 1)
grid()

3.3 Postplots

We now display the locations, but also using the point symbol represent the
data value. This is called a postplot, because it “posts” (puts into geographic
position) the data values.

Task 5 : Display a postplot of the annual growing degree days above 50° F
6 See the help for the palette function

4

−4e+05 −2e+05 0e+00 2e+05

−
4e

+
05

−
3e

+
05

−
2e

+
05

−
1e

+
05

0e
+

00
1e

+
05

2e
+

05
3e

+
05

E

N

ATLA
ATLA

AUDU

BELL

BELV
BOON

CANO

CAPE

CHAR

CRAN

ESSE

FLEM

FREE

GLAS
HAMM

HIGH

HIGH

INDI

JERS

LAMB

LITT

LONG

LONG

MILL

MOOR

MORR
NEWA

NEW

NEWT

PEMB

PLAI

SAND

SEAB

SOME

SUSS

TOMS

TUCK

WANA

WOOD

ADDI

ALBA

ALBI

ALCO

ALFR

ALLE

ANGE

ARCA

AUBU

AURO

AVON

BAIN

BATA

BATH

BING
BOLI

BOON

BRID

BROC

BUFF

CAIR

CAMD

CANA

CANT

CHAS

CHAZ

CHER

COBLCOLD

CONK

COOP

COPA

CORT

DANN

DANS

DELH

DEPO

DOBB

DOWN

EAST

ELIZ

ELMI ENDI

FRAN

FRED

GENE

GLEN

GLENGLEN

GLOV

GOUV

GOWA

GRAF

GREE

GRIF

HEML

HINC

HUDS

INDI

ISLI

ITHA

JAME

LAKE

LANS

LAWR

LIBE

LITTLITT

LITT

LOCK
LOCK

LOWV

MALO

MARY

MASS

MIDD

MILL

MINE

MOHO

MORR
MOUN

NEWC

NEW

NEW

NEW

NEW

NY W

NIAG

NORW

OGDE

OLD

OSWE

PATC

PENN

PERU
PLAT

PORT

POUG

RAY

RIVE

ROCH
SALE

SARA

SCAR SETA

SHER

SLID

SODU

SPEN

STIL

STOR

SUFF

SYRA

TROYTULL

TUPP

UTIC
UTIC

VALA

WALD

WALE

WALT

WANA

WANT

WARS

WATEWATE

WAVE

WEST

WEST

WEST

WHIT

YORK

ALLE

ALTO

ALTO

BAKE BELT

BIGL

BLOS
BLUE

BRAD
BRAD

BROO

BUCKBURG

BUTL

CANT

CHAL CHAM

CLAR

CLER

COAT

CONF

CORR

COUD

DERR

DEVA
DONE

DONO

DUBO

EBEN

EISE

EMPO

ERIE

EVER

FORD

FRAN

FRAN

FREE

GRAT

GREE

HAMB

HANO

HARR

HAWL

HOLT

HOPE

INDI

JAME

JOHN

KANE

KEGG LANC
LAND

LAUR

LAUR

LEBA

LEWI

LINE

LOCK

MADE

MARC

MARI

MATA

MCKE

MEAD

MERC

MERC

MILL

MONT

MONT

NESH

NEW

NEWP

NORR

OCTO

PALM

PHIL

PHIL

PHOE

PITT

PLEA

PRIN

PUTN

RAYS READ

RENO
RIDG

RODASALI

SELI

SHIP

SLIP

STAT

STEV

STOY

STRO

TION

TITU

TOBY

TOWA

UNIO

WARR

WASH

WAYN

WELL

WEST

WILK
WILL

YORK

BALL BELL

BURL

CAVE

CHELCORN

DORS

ENOS

ESSE

JAY

MONT

MORRMOUN

NEWP

READ

ROCH

RUTL

ST A

SAIN

SOUT

SOUT

VERN

WATE

WEST

WOOD

Figure 1: Location of weather stations

5

(attribute ANN_GDD50). •

For this we use the “Grammar of Graphics” [27] as implemented in the
ggplot2 package [25, 26]. This is part of the so-called “tidyverse”7 set of
packages from Hadley Wickham. The tidyverse web site has a comprehensive
introduction to ggplot28.
require(ggplot2)

The ggplot2 concept is that a graphic is initialized with ggplot and then
elements are added to the graphic, each separated by a + operator, which in
this context means “add to the graph”, not arithmetic addition.

In this example we first open the plot with the ggplot function, specifying
the source of the data for the plot with the data argument, and then:

1. specify how the graph should be set up on the page with the aes
function: the x axis from the E coördinate and the y axis from the N
coördinate;

2. add points with the the geom_point “geometry” function;

3. add axis labels with the xlab and ylab functions;

4. add a fixed-scale coördinate system for the graphic, with coord_fixed.

The points have an “aesthetic” (how they are displayed), specified with
the aes function, and the name of the data frame where the names in the
aesthetic can be found. We make the size of the points proportional by
degree days, and the colour of the points by elevation, so we can visually
assess if there is any relation both with coördinates and with elevation. We
specify a printing character with the shape argument to geom_point.
ggplot(data=ne.df) +

aes(x=E, y=N) +
geom_point(aes(size=ANN_GDD50,

colour=ELEVATION_),
shape=20) +

xlab("E") + ylab("N") + coord_fixed()

The result is Fig. 2.

Q1 : Does there appear to be any regional trend with North or East? with
elevation? Jump to A1 •

The sf object can be directly plotted, without reducing it to a data frame,
using the geom_sf “class sf geometry” method from the ggplot2 package.
ggplot() +

geom_sf(data = ne.m,
aes(size=ANN_GDD50,

colour=ELEVATION_), shape = 20) +
labs(x = "Longitude", y = "Latitude",

size = "GDD base 50F",
colour = "Elevation, feet a.s.l.") +

geom_sf(data = state.ne.m.boundary, col = "darkgray", size = 2)

7 https://www.tidyverse.org
8 https://ggplot2.tidyverse.org

6

https://www.tidyverse.org
https://ggplot2.tidyverse.org

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05
E

N

ELEVATION_

1000

2000

3000

ANN_GDD50

1000

2000

3000

4000

Figure 2: Annual Growing Degree days, 50F

7

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W
Longitude

La
tit

ud
e

GDD base 50F

1000

2000

3000

4000

Elevation, feet a.s.l.

1000

2000

3000

Figure 3: Annual Growing Degree days, base 50F

8

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W
Longitude

La
tit

ud
e

Elevation, feet a.s.l.

1000

2000

3000

GDD base 50F

1500

2000

2500

3000

3500

4000

Figure 4: Annual Growing Degree days, base 50F

Note the one very small GDD50, which causes the remainer of the points to
look quite similar. We can remove this for display purposes, and then show
it separately as a red point.
(which.lowest.gdd <- which.min(ne.m$ANN_GDD50))

[1] 293

ggplot() +
geom_sf(data = ne.m[-which.lowest.gdd,],

aes(size=ANN_GDD50,
colour = ELEVATION_), shape = 10) +

geom_sf(data = ne.m[which.lowest.gdd,], colour = "red") +
labs(x = "Longitude", y = "Latitude",

size = "GDD base 50F",
colour = "Elevation, feet a.s.l.") +

geom_sf(data = state.ne.m.boundary, col = "darkgray", size = 2)

Still quite a wide range, but now easier to visualize.

3.4 * Viewing in geographic context

To check station locations, and to relate them to geographic features (land
use, water bodies, cities …) an easy method is to export the points as a
KML file for display in Google Earth. Features in Google Earth must be
in geographic coördinates (long/lat), on the WGS84 ellipsoid. As we saw

9

Figure 5: Stations shown on Google Earth

above, these station records do have geographic coördinates, but on the
NAD27 datum, which uses the Clarke 1866 ellipsoid. So we need to do a
datum transformation from one representation of the Earth’s shape (and
hence the location on the surface of geographic coördinates) to another. For
this we use the st_transform method of the sf package.

We use three functions from the plotKML package: kml_open, kml_layer,
and kml_close. The colour ramp is from the target variable, here annual
growing-degree days, and the points are labelled with the station name.
ne.wgs84 <- st_transform(ne.m, st_crs(4326))

this is the EPSG code for global WGS84 long/lat
require(plotKML)
shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png"
station.names = substr(ne.wgs84$STATION_NA,1,12)
kml_open(file.name='ne.stations.kml')

KML file opened for writing...

kml_layer(ne.wgs84, colour=ANN_GDD50,
colour_scale=SAGA_pal[[1]], shape=shape,
points_names=station.names)

Writing to KML...

kml_close('ne.stations.kml')

Closing ne.stations.kml

Open the resulting KML file in Google Earth to see the station locations in
their geographic context; see Figure 5.

10

4 Trend surface: a linear model solved by Ordinary Least Squares

An obvious approach to prediction is to develop a model of GDD50 based on
one or more of the covariables in the dataframe: (1) Easting, (2) Northing
coördinates and (3) elevation. We know that in general higher elevations
and more northerly latitudes are cooler; in this Atlantic region maybe the
more easterly longitudes are warmer. We saw these relations spatially with
the 2.5D postplots of the previous section, here we look at the relations in
feature space for each possible covariable separately.

4.1 Exploring the relation between predictors and predictand

Task 6 : Display the relation between ANN_GDD50 and covariates elevation
and coordinates; colour the scatterplot points by State. •
p1 <- ggplot() +

geom_point(
aes(x=ELEVATION_, y=ANN_GDD50, colour=STATE),

data=ne.df
)

p2 <- ggplot() +
geom_point(

aes(x=E, y=ANN_GDD50, colour=STATE),
data=ne.df

) + xlab("Easting")
p3 <- ggplot() +

geom_point(
aes(x=N, y=ANN_GDD50, colour=STATE),

data=ne.df
) + xlab("Northing")

print(p3)
print(p2)
print(p1)

1000

2000

3000

4000

−4e+05 −2e+05 0e+00 2e+05
Northing

A
N

N
_G

D
D

50

STATE

NJ

NY

PA

VT

1000

2000

3000

4000

−4e+05 −2e+05 0e+00 2e+05
Easting

A
N

N
_G

D
D

50

STATE

NJ

NY

PA

VT

1000

2000

3000

4000

0 1000 2000 3000 4000
ELEVATION_

A
N

N
_G

D
D

50

STATE

NJ

NY

PA

VT

We now examine the scatterplots to see if these relations are useful pre-
dictors of GDD50, and if so, does the relation appear to be linear, or if a
transformation to linearity is needed.

Q2 : Describe the relations between GDD50 and the three possible predic-
tors. Jump to A2

11

1000

2000

3000

4000

0 20 40 60
sqrt(ELEVATION_)

A
N

N
_G

D
D

50

STATE

NJ

NY

PA

VT

Figure 6: GDD50 vs. square root of elevation

•

The relation of GDD50 with elevation looks parabolic, so try a square-root
transform.

Task 7 : Re-display the relation between GDD50 and elevation, but with
the elevation square-root transformed to correspond to the inverse parabolic
shape perceived in the original graph. •
ggplot() +

geom_point(
aes(x=sqrt(ELEVATION_), y=ANN_GDD50, colour=STATE),

data=ne.df
)

A square-root transformation of elevation looks quite linear.

Note: This does not agree with theory, in that the adiabatic lapse rate (due
to thinner air) of temperature with elevation is linear.

Task 8 : Compute the linear correlations between each predictor and
GDD50. •

The cor function computes bivariate correlations; the default method is
Pearson product-moment (linear) correlation.
with(ne.df, cor(ANN_GDD50, N))

[1] -0.728741

with(ne.df, cor(ANN_GDD50, E))

[1] -0.009425215

with(ne.df, cor(ANN_GDD50, sqrt(ELEVATION_)))

[1] -0.7468479

12

Q3 : Which linear correlations are strongest? What does the sign (±) of
the correlation indicate? Jump to A3 •

4.2 OLS fit to the linear model

We first fit a linear model with the strongest single factor.

Task 9 : Fit a linear model, using ordinary least squares (OLS), of annual
GDD predicted by the square root of elevation. Display the model summary.

•

The workhorse lm “linear modelling” function fits the model.
m.ols.elev <- lm(ANN_GDD50 ~ sqrt(ELEVATION_), data=ne.df)
summary(m.ols.elev)

##
Call:
lm(formula = ANN_GDD50 ~ sqrt(ELEVATION_), data = ne.df)
##
Residuals:
Min 1Q Median 3Q Max
-1346.24 -278.03 2.65 258.74 1012.87
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3472.287 53.520 64.88 <2e-16 ***
sqrt(ELEVATION_) -37.000 1.893 -19.55 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 382.3 on 303 degrees of freedom
Multiple R-squared: 0.5578,Adjusted R-squared: 0.5563
F-statistic: 382.2 on 1 and 303 DF, p-value: < 2.2e-16

Q4 : How much of the variability of GDD50 over the four states is explained
by this model? Jump to A4 •

This is not so successful, so we try to use both predictors that showed a
good correlation with GDD50.

Task 10 : Fit a linear model, using ordinary least squares (OLS), of an-
nual GDD predicted by the additive effects of Northing and square root of
elevation. Display the model summary. •

Again we use the lm “linear modelling” function to fit the model:
m.ols <- lm(ANN_GDD50 ~ sqrt(ELEVATION_) + N, data=ne.df)
summary(m.ols)

##
Call:
lm(formula = ANN_GDD50 ~ sqrt(ELEVATION_) + N, data = ne.df)
##
Residuals:
Min 1Q Median 3Q Max
-899.15 -156.45 -9.78 153.12 660.08

13

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by OLS

A
ct

ua
l

NJ
NY
PA
VT

Figure 7: Actual vs. predicted, OLS model

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.119e+03 3.409e+01 91.49 <2e-16 ***
sqrt(ELEVATION_) -2.924e+01 1.138e+00 -25.69 <2e-16 ***
N -1.981e-03 8.051e-05 -24.60 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 220.9 on 302 degrees of freedom
Multiple R-squared: 0.8528,Adjusted R-squared: 0.8518
F-statistic: 874.9 on 2 and 302 DF, p-value: < 2.2e-16

Now the model explains much more (85.2%) of the variation in GDD50; we
conclude that the North coördinate is an important predictor.

Task 11 : Plot the actual vs. fits as a scatterplot, adding a 1:1 line. •
plot(ne.m$ANN_GDD50 ~ fitted(m.ols),

col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by OLS", ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid()
abline(0,1)

Q5 : How well does the model fit the observations? Are any observations
poorly-fit? Jump to A5 •

OLS modelling has strong assumptions, some of which we now examine.

14

• Residuals are normally-distributed;

• No relation between the fitted value and the distribution of the resid-
uals, either their mean or their spread;

• No observations with high leverage (i.e., influence on the regression co-
efficients) have large residuals. This is measured with Cook’s Distance,
which gives the effect of deleting an observation on the regression co-
efficients.

Task 12 : Examine the feature-space model diagnostics for these three
requirements. •

par(mfrow=c(1,3))
plot(m.ols, which=c(1,2,5))
par(mfrow=c(1,1))

1000 1500 2000 2500 3000 3500

−
10

00
−

50
0

0
50

0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

3070

3087
3830

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

3070

3087
3830

0.00 0.01 0.02 0.03 0.04

−
4

−
2

0
2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

3087

3070

3047

Q6 : Is there any relation between fits and residuals? Is the variability
of the residuals approximately the same across the range of fits? Are the
residuals normally-distributed? Are any high-leverage points inconsistent
with the others? Jump to A6 •

We will look at the suspect observations in detail in the next §4.3.

We’ve now built a model, and we can use it to predict at any point for which
we know the values of the predictors, i.e., the Northing and elevation.

4.3 Data cleaning

But first, we look at some of the most poorly-fitted points, to determine if
the poor fit is caused by an error in the database, or by an incorrect model.

Task 13 : Find and display the points with the maximum and minimum
model residuals. •

15

The which.min and which.max functions find the index (position) in a vector
of the minimum and maximum value, respectively.
(ix <- c(which.max(residuals(m.ols)), which.min(residuals(m.ols))))

3087 3070
113 96

ne.df[ix,]

STATION_ID STATE STATION_NA LATITUDE_D LONGITUDE_ ELEVATION_
3087 305113 NY MARYLAND 6 SW 42.52 -74.97 3911
3070 303889 NY HINCKLEY 2 SW 43.30 -75.15 114
OID_ COOP_ID STATE_1 STN_NAME LAT_DD LONG_DD ELEV_FT
3087 3085 305113 NY MARYLAND 6 SW 43 -75 3911
3070 3068 303889 NY HINCKLEY 2 SW 43 -75 114
JAN_GDD50 FEB_GDD50 MAR_GDD50 APR_GDD50 MAY_GDD50 JUN_GDD50
3087 0 0 0 23 177 387
3070 0 0 0 22 155 349
JUL_GDD50 AUG_GDD50 SEP_GDD50 OCT_GDD50 NOV_GDD50 DEC_GDD50
3087 542 496 251 66 2 1
3070 505 443 210 46 1 0
ANN_GDD50 E N dist.lakes dist.coast mrvbf
3087 1945 84568.04 2726.668 153690.43 201440.5 1.97863948
3070 1731 68938.15 89269.546 89837.08 283505.4 0.04802479
tri3 pop15 pop2pt5
3087 53.52679 1.370249 1.478395
3070 47.67730 1.558281 1.491255

ne.df[ix,c("LATITUDE_D", "LONGITUDE_")]

LATITUDE_D LONGITUDE_
3087 42.52 -74.97
3070 43.30 -75.15

The under-prediction (station 3087) is approximately six miles SW of Mary-
land, NY in Otsego County. This appears to be a mistake in the database;
the elevation is listed as 3911’ (feet), which is much higher than any terrain
in the area.

Note: If you wish, find the approximate location on Google Earth by enter-
ing the geographic coördinates; note these are on NAD27 so will not match
the WGS84 of Google Earth exactly. You can also find this on Google Maps
and display the terrain.

Note that 3911’ = 1192 m; the strong suspicion is that this height which
should be in feet was assumed to be in meters and then multiplied by
(3.28084 feet m-2), when in fact it was in feet. So, the incorrectly high
elevation lead to an incorrectly low predicted value. After some research we
find9 revised records for this station10:

BEGINS ENDS LATITUDE LONGITUDE
NUM DIV ST COUNTY COOP STATION YEARMODY YEARMODY D M S D M S ELEV
305113 02 NY OTSEGO MARYLAND 6 SW 19831026 19881001 42 31 00 -074 58 00 1192
305113 02 NY OTSEGO MARYLAND 6 SW 19881001 20080702 42 31 00 -074 58 00 1192

Here the elevation is given as 1192’, which matches well with the terrain;
6 miles SW from the village of Maryland is along Schenvus Creek , whose
9 https://wrcc.dri.edu/Monitoring/Stations/station_inventory_show.php?snet=

coop&sstate=NY
10 In fact this station was moved in July 2008, after our time period 1971-2000, so there

is another record for it at a slightly different location

16

https://wrcc.dri.edu/Monitoring/Stations/station_inventory_show.php?snet=coop&sstate=NY
https://wrcc.dri.edu/Monitoring/Stations/station_inventory_show.php?snet=coop&sstate=NY

bluffs are at about 1200’. Further this matches the assumed mistake. So we
feel justified in correcting this record accordingly.

The over-prediction is two miles SW of Hinckley, NY in Oneida County, near
Barneveld. Again this appears to be a mistake, the elevation listed as 114’
but is about 1200’; so the model predicts as if it is at a much lower elevation,
i.e., the prediction is too high. It seems here there was just a missing digit;
the database record is:

BEGINS ENDS LATITUDE LONGITUDE
NUM DIV ST COUNTY COOP STATION YEARMODY YEARMODY D M S D M S ELEV
303889 06 NY ONEIDA HINCKLEY 2 SW 19871014 19930301 43 18 00 -075 09 00 1141

We can correct these two points with their elevations from this (it appears
correct) database. We make sure to make a record of these changes and our
reasons for making them, in case other analysts want to check our work.

Task 14 : Correct the elevation attribute of these two points in the dataset.
•

We correct the ELEVATION_ field, which we are using for modelling. But we
see that the dataset also has a ELEV_FT field, which duplicates this infor-
mation – it is unclear why. At any rate, we do not want an inconsistent
dataset, so we correct both elevation fields to the same value.
ne.m[ix[1],"ELEVATION_"] <- ne.m[ix[1],"ELEV_FT"] <- 1192
ne.df[ix[1],"ELEVATION_"] <- ne.df[ix[1],"ELEV_FT"] <- 1192
ne.m[ix[2],"ELEVATION_"] <- ne.m[ix[2],"ELEV_FT"] <- 1141
ne.df[ix[2],"ELEVATION_"] <- ne.df[ix[2],"ELEV_FT"] <- 1141

Task 15 : Re-fit the linear model from the corrected database. •
m.ols <- lm(ANN_GDD50 ~ sqrt(ELEVATION_) + N, data=ne.df)
summary(m.ols)

##
Call:
lm(formula = ANN_GDD50 ~ sqrt(ELEVATION_) + N, data = ne.df)
##
Residuals:
Min 1Q Median 3Q Max
-532.76 -153.15 -7.84 155.44 641.76
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.151e+03 3.321e+01 94.87 <2e-16 ***
sqrt(ELEVATION_) -3.040e+01 1.113e+00 -27.33 <2e-16 ***
N -1.952e-03 7.730e-05 -25.25 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 211.6 on 302 degrees of freedom
Multiple R-squared: 0.865,Adjusted R-squared: 0.8641
F-statistic: 967.3 on 2 and 302 DF, p-value: < 2.2e-16

The model coefficients have changed and the 𝑅2 has increased about 1.5%,
as a result of correcting just these two (out of a total 305) records.

What about the regression diagnostics?

17

par(mfrow=c(1,3))
plot(m.ols, which=c(1,2,5))
par(mfrow=c(1,1))

1000 1500 2000 2500 3000 3500

−
60

0
−

40
0

−
20

0
0

20
0

40
0

60
0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

3830

3047

3031

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

3830

3047

3031

0.00 0.01 0.02 0.03 0.04

−
3

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

3047

3830

3031

These are much better. Notice how the points with high absolute residuals
now have much lower leverage, and the normal Q-Q plot no longer has points
well off the expected 1:1 line.

Redo the actual vs. fitted plot:
plot(ne.m$ANN_GDD50 ~ fitted(m.ols),

col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by OLS (corrected data)",
ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid()
abline(0,1)

Task 16 : Summarize the OLS linear model residuals. •
summary(residuals(m.ols))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-532.764 -153.151 -7.838 0.000 155.435 641.758

To put these residuals in perspective, the difference between an early and
medium maturity maize variety is about 300 GDD50. The inter-quartile
range (IQR) is about ±150, which is about half of this on each side of perfect
fit; i.e., the IQR is about the difference between maize maturities..

There are still some high residuals that could be checked for accuracy.

Challenge: Check the records for the largest residuals in the corrected
model; if there is good evidence to do so, adjust the database accordingly
and re-fit the model.

Challenge: Add Easting to the additive linear model and see if the model co-
efficient is significantly different from zero. You can try a pure trend surface
(without elevation), a trend surface with elevation, and a trend surface with
an elevation interaction – i.e., the effect of elevation is not the same across
the region. Interpret the “best” model. Does this have a physical interpre-

18

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by OLS (corrected data)

A
ct

ua
l

NJ
NY
PA
VT

Figure 8: Actual vs. predicted, OLS model with corrected observations

tation, in the same way we can relate GDD50 to Northing and elevation?
Compare with ANOVA and/or AIC; confirm good linear model diagnostics.
Identify the stations with the largest positive and negative residuals; try to
explain why.

4.4 Spatial correlation of OLS model residuals

Are the model residuals spatially correlated? If so, that violates the as-
sumption of independent residuals that is necessary for the OLS fit to be
optimum.

Task 17 : Add the linear model residuals to the sf object, so we can display
them spatially. •
ne.m$ols.resid <- residuals(m.ols)

A so-called “bubble” plot shows the absolute value of a variable by circle
size (the “bubble”), and the sign (±) by colour.

Task 18 : Display a bubble plot of the model residuals. •

There is no built-in bubble plot function for sf point geometries, so we
build a small user-defined function for this. It will also be used later in theuser-defined

function tutorial.

Note: This code uses the ability of R to build a command string using the
paste function, parse it into R internal format with the parse functions, and
then evaluate it in the current environment with the eval function.

19

Arguments:

.oint.obj.name : Name of the point object, not the object itself

.field.name : Name of the data column (“field”) in the point object to be plotted

.field.label : A text label for the field

.title : Plot title, default none.
bubble.sf <- function(.point.obj.name, .field.name, .field.label, .title="") {

make a plus/minus indicator
eval(parse(

text = paste0("pm <- factor(",
.point.obj.name, "$",
.field.name, "> 0)")

))
rename them
levels(pm) <- c("-, overprediction", "+, underprediction")
plot
eval(parse(

text = paste0("ggplot(",
.point.obj.name,
") + geom_sf(aes(colour = pm, size = abs(",
.field.name,
")), shape = 1) + labs(size = paste('+/-', .field.label),
colour = '', title = '",
.title, "') +
scale_colour_manual(values = c('red', 'green'))")

))
}

Now use this function on the OLS residuals:
bubble.sf("ne.m", "ols.resid", "residuals, GDD50F", "OLS")

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− residuals, GDD50F

200

400

600

−, overprediction

+, underprediction

OLS

Q7 : Is there evidence for spatial correlation of the OLS residuals? Describe
some locations where this is most evident. If you know the study area,
speculate as to why certain areas are over- or under-predicted by the linear

20

trend surface. Jump to A7 •

We now quantify the spatial correlation with variogram analysis.

4.4.1 The empirical variogram

The empirical variogram shows the average semivariance as a function of
separation between point pairs.

The semivariance between any two observations is defined as:

𝛾(s𝑖 , s 𝑗) =
1

2
[𝑧(s𝑖) − 𝑧(s 𝑗)]2 (3)

where s is a geographic point and 𝑧(s) is its attribute value, in this case the
residual ANN_GDD50 from the OLS model. Each pair of points is separated
by a vector h, generally computed as the Euclidean distance between the
points:

h = | |x𝑖 , x 𝑗 | | = (
𝑛∑
𝑘=1

(𝑠𝑖,𝑘 − 𝑠 𝑗 ,𝑘)2)
1
2 (4)

where 𝑛 is the number of dimensions (in this example, 2). There are (𝑛 ·
(𝑛 − 1))/2 point-pairs that can be compared this way; in our example this is
(305 · 304)/2 = 46 360; clearly we need some way to summarize this.

The model of spatial dependence assumes 2nd-order stationarity, i.e., the
semivariance does not depend on the absolute location. Therefore an em-
pirical variogram averages the individual semivariances in some separation
range called a “bin”:

𝛾(h) = 1

2𝑁h

𝑁h∑
𝑖=1

[𝑧(s𝑖) − 𝑧(s𝑖 + h)]2 (5)

where h is a lag vector, i.e., a range of separations.

The analyst chooses the bin widths: wide enough to have enough point-pairs
(>≈ 150) for reliable estimation, narrow enough to reveal the fine structure
of spatial dependence.

Task 19 : Compute and display a variogram of the OLS residuals. Use a
short cutoff, estimated from the bubble plot. •

The variogram can be computed with the variogram function of the gstat
package. Load this package:
require(gstat)

Then compute and display the variogram. We use a cutoff of 100 km and
a bin size of 16 km, to have enough points in the closest bin, and to avoid
very local effects.

21

v.r.ols <- variogram(ols.resid ~ 1, locations=ne.m,
cutoff=100000, width=16000)

plot(v.r.ols, pl=T)

distance

se
m

iv
ar

ia
nc

e
10000

20000

30000

40000

20000 40000 60000 80000

70

369

643 794 945

1061

269

Note that the units of measure of the semivariances are (ANN_GDD50)2.

Q8 : What is the range of the spatial correlation? That is, the maximum
separation distance at which there is lower semivariance than the maximum
(total sill)? Jump to A8 •

4.4.2 Fitting an authorized variogram model

We require a continuous function of semivariance vs. separation, so that for
any separation we can compute the semivariance to be used in the kriging
equations. This must be an authorized variogram model that ensures that
the kriging system will be postive semi-definite and thus invertible.

Task 20 : Fit an exponential variogram model to this empirical variogram.
•

The fit.variogram function of the gstat package uses a weighted least-
squares (WLS) fit of a model form to the empirical variogram. The default
weighting is proportional to the number of point-pairs per bin, and inverse-
square proportional to the separation. So more weight is given to the short-
range component of the model, and to bins with more reliable estimates of
the semivariance.

An exponential variogram model is often used with residuals, as it is the
simplest model form and corresponds to a diffusion process, which seems to
fit our concept of air movement.
(vmf.r.ols <- fit.variogram(v.r.ols, vgm(15000, "Exp", 20000, 20000)))

model psill range
1 Nug 1435.842 0.00
2 Exp 37382.603 12106.96

22

plot(v.r.ols, pl=T, model=vmf.r.ols)

distance

se
m

iv
ar

ia
nc

e

10000

20000

30000

40000

20000 40000 60000 80000

70

369

643 794 945

1061

269

The effective range of the fitted model is 36.3 km, that is, pairs of points
within this range partially duplicate each other’s information.

This successful model fit shows that there is spatial correlation among the
residuals, so the OLS fit of §4 is not optimal.

4.5 * Close-range anomalies

An interesting detour is to investigate anomalies which may show some fea-
tures of micro-climate, using the variogram cloud. The results of this op-
tional section are not used later in the exercise.

Task 21 : Examine the short-range behaviour with the variogram cloud (all
point-pairs): •

The cloud argument to the variogram function produces a variogram cloud,
i.e., a variogram that shows each point-pair’s semivariance vs. separation,
rather than summarizing in (somewhat arbitrary) bins. This allow us to
identify pairs of points with unusually high or low semivariances for their
separation.
vc <- variogram(ols.resid ~ 1, locations=ne.m, cutoff=12000, cloud=T)
plot(vc, pch=20, cex=2)

23

distance
se

m
iv

ar
ia

nc
e

20000

40000

60000

80000

100000

2000 4000 6000 8000 10000

We see some close point-pairs with fairly large semivariances (differences in
their model residuals), especially the point-pair separated by about 4 000 m
but with a semivariance of about 100 000 GDD502. Let’s see which point-
pairs are closest, and their individual semivariances.

The as.data.frame method applied to a variogram cloud creates two new
fields, left and right, giving the identities of the two points in each pair.

Note: The order of the points is arbitrary, since the distance between them
does not depend on which point is the origin and which the destination.

We then look for the highest semivariances at shortest distances (< 8 km).

We use the order function is used to sort the indices, here in order of
increasing separation.
vc.df <- as.data.frame(vc)
vc.close <- subset(vc.df, vc.df$dist < 8000)
sort by separation, look for anomalies.
vc.close[order(vc.close$dist),c("dist","gamma","left","right")]

dist gamma left right
26 2007.455 19456.999 234 136
20 3362.049 19461.756 143 77
11 4446.408 99043.801 107 106
31 6044.983 9207.781 289 283
28 6156.757 52361.745 250 197
3 6973.391 4663.255 21 11
13 7527.628 53205.364 123 19
9 7578.549 18717.268 39 33
14 7590.756 9725.831 125 123

This list shows all the point-pairs separated by < 8km, see field dist.
They have semivariances ranging from about 9000 to 55000 GDD502, ex-
cept for the pair of points 106 and 107, which have a very large semivariance,
9.9044 × 104. This shows that the two have quite different residuals from
the linear model fit These two are separated by only about 4.5 km but are
quite dissimilar. This is quite an anomaly, let’s see the details for this two
stations:
print(ne.m[c(106,107),c("STATE","STATION_NA","LATITUDE_D","LONGITUDE_",

"ELEVATION_", "ANN_GDD50","ols.resid")])

Simple feature collection with 2 features and 7 fields

24

Figure 9: Little Falls NY weather station locations. Source: USGS 15
Minute Series, Little Falls NY quadrangle, 1900. Available from http:
//nationalmap.gov/historical/

Geometry type: POINT
Dimension: XY
Bounding box: xmin: 91979.84 ymin: 59519.73 xmax: 92037.89 ymax: 63965.75
Projected CRS: +proj=aea +lat_0=42.5 +lat_1=39
+lat_2=44 +lon_0=-76 +ellps=WGS84 +units=m
STATE STATION_NA LATITUDE_D LONGITUDE_ ELEVATION_
3080 NY LITTLE FALLS CITY RSVR 43.07 -74.87 900
3081 NY LITTLE FALLS MILL ST 43.03 -74.87 360
ANN_GDD50 ols.resid geometry
3080 1994 -119.8751 POINT (91979.84 63965.75)
3081 2783 325.1952 POINT (92037.89 59519.73)

These two stations are both near Little Falls (NY), one (3081) on Mill Street
along the Mohawk River and one (3080) on Reservoir Road north of the
village; see Figure 9.

Checking the topographic map, the elevations are correct; the discrepancy
is because the Mill Street station is in a narrow river valley that is much
warmer than predicted by the model, hence the large positive residual (actual
- predicted). The Reservoir Road station is somewhat over-predicted.

So, the data seems to be correct; the lesson is that close-by stations can have
quite different micro-climates, and we have no factor in the model to account
for this. Local interpolators such as kriging will also fail in this situation.

5 Trend surface: a linear model fit by Generalized Least Squares

To solve the problem of spatially-correlated OLS residuals, we turn to gen-
eralized least squares (GLS).

5.1 * GLS – theory

The key difference here is that in the linear model fit by OLS, the residuals
𝜀 are assumed to be independently and identically distributed with the same

25

http://nationalmap.gov/historical/
http://nationalmap.gov/historical/

variance 𝜎2:
y = X𝛽 + 𝜀, 𝜀 ∼ N(0, 𝜎2I) (6)

Whereas, now the residuals are themselves considered to be a random vari-
able 𝜂 that has a covariance structure:

y = X𝛽 + 𝜂, 𝜂 ∼ N(0,V) (7)

where V is a positive-definite variance-covariance matrix of the model resid-
uals. The covariances in this matrix (off-diagonals) are typically based on
the distance between observations, using some model of spatial correlation.

Lark and Cullis [13, Appendix] point out that the error vectors can now
not be assumed to be spherically distributed in feature space around the 0
expected value, but rather that error vectors in some directions are longer
than in others. So, the measure of distance (the vector norm) is now a so-
called “generalized” distance11, taking into account the covariance between
error vectors:

𝑆 = (y −X𝛽)𝑇V−1(y −X𝛽) (8)

The OLS equivalent is simpler:

𝑆 = (y −X𝛽)𝑇 (y −X𝛽) (9)

Comparing these equations, we see that the GLS formulation of Equation 8
includes the variance-covariance matrix of the residuals V = 𝜎2𝐶, where 𝜎2

is the variance of the residuals and C is the correlation matrix. This reduces
to the OLS formulation of Equation 9 if there is no covariance, i.e., V = I.

Expanding Equation 8, taking the partial derivative with respect to the
parameters, setting equal to zero and solving we obtain:

𝜕

𝜕𝛽
𝑆 = −2X𝑇V−1y + 2X𝑇V−1X𝛽

0 = −X𝑇V−1y +X𝑇V−1X𝛽

𝛽GLS = (X𝑇V−1X)−1X𝑇V−1y (10)

This reduces to the OLS estimate 𝛽OLS if there is no covariance, i.e., V = I.

In the case of spatial correlation, we ensure positive-definiteness (i.e., always
a real-valued solution) by using an authorized covariance function 𝐶 and
assuming that the entries are completely determined by the vector distance
between points x𝑖 − x 𝑗 :

C𝑖, 𝑗 = 𝐶 (x𝑖 − x 𝑗) (11)

In this formulation 𝐶 has a three-parameter vector 𝜃, as does the correspond-
ing variogram model: the range 𝑎, the total sill 𝜎2, and the proportion of
total sill due to pure error, not spatial correlation 𝑠12.
11 This is closely related to the Mahalanobis distance
12 In variogram terms, this is the nugget variance 𝑐0 as a proportion of the total sill (𝑐0+𝑐1).

26

In modelling terminology, the coefficients 𝛽 are called fixed effects, because
their effect on the response variable is fixed once the parameters are known.
By contrast the covariance parameters 𝜂 are called random effects, because
their effect on the response variable is stochastic, depending on a random
variable with these parameters.

Models with the form of Equation 7 are called mixed models: some effects
are fixed (here, the relation between elevation or Northing and the GDD50)
and others are random (here, the error variances) but follow a known struc-
ture; these models have many applications and are extensively discussed
in Pinheiro and Bates [19]. Here the random effect 𝜂 represents both the
spatial structure of the residuals from the fixed-effects model, and the un-
explainable (short-range) noise. This latter corresponds to the noise 𝜎2 of
the linear model of Equation 6.

To solve Equation 10 we first need to compute V, i.e., estimate the variance
parameters 𝜃 = [𝜎2, 𝑠, 𝑎], use these to compute C with equation 11 and from
this V, after which we can use equation 10 to estimate the fixed effects 𝛽.
But 𝜃 is estimated from the residuals of the fixed-effects regression, which
has not yet been computed. How can this “chicken-and-egg”13 computation
be solved?

The answer is to use residual (sometimes called “restricted”) maximum like-
lihood (REML) to maximize the likelihood of the random effects 𝜃 indepen-
dently of the fixed effects 𝛽.

Here we fit the fixed effects (regression coefficients) at the same time as we
estimate the spatial correlation.

Lark and Cullis [13, Eq. 12] show that the likelihood of the parameters in
Equation 6 can be expanded to include the spatial dependence implicit in
the variance-covariance matrix V, rather than a single residual variance 𝜎2.
The log-likelihood is then:

ℓ(𝛽, 𝜃 |y) = 𝑐 − 1

2
log |V| − 1

2
(y −X𝛽)𝑇V−1(y −X𝛽) (12)

where 𝑐 is a constant (and so does not vary with the parameters) and V
is built from the variance parameters 𝜃 and the distances between the ob-
servations. By assuming second-order stationarity14, the structure can be
summarized by the covariance parameters 𝜃 = [𝜎2, 𝑠, 𝑎], i.e., the total sill,
nugget proportion, and range.

However, maximizing this likelihood for the random-effects covariance pa-
rameters 𝜃 also requires maximizing in terms of the fixed-effects regression
parameters 𝛽, which in this context are called nuisance parameters since
at this point we don’t care about their values; we will compute them after
determining the covariance structure.

Both the covariance and the nuisance parameters 𝛽 must be estimated, it
seems at the same time (“chicken and egg” problem) but in fact the technique
13 from the question “which came first, the chicken or the egg?”
14 that is, the covariance structure is the same over the entire field, and only depends on

the distance between pairs of points

27

of REML can be used to first estimate 𝜃 without having to know the nuisance
parameters. Then we can use these to compute C with equation 11 and from
this V, after which we can use equation 10 to estimate the fixed effects 𝛽.

The maximum likelihood estimate of 𝜃 is thus called “restricted”, because
it only estimates the covariance parameters (random effects). Conceptu-
ally, REML estimation of the covariance parameters 𝜃 is ML estimation of
both these and the nuisance parameters 𝛽, with the later integrated out [19,
§2.2.5]:

ℓ(𝜃 |y) =
∫

ℓ(𝛽, 𝜃 |y) 𝑑𝛽 (13)

Pinheiro and Bates [19, §2.2.5] show how this is achieved, given a likelihood
function, by a change of variable to a statistic sufficient for 𝛽.

5.2 GLS – practice

The computations are performed with the gls function of the nlme ‘Non-
linear mixed effects models’ package [1].

Task 22 : Set up and solve a GLS model, using the covariance structure
estimated from the variogram of the OLS residuals. •

The linear model formulation is the same as for lm. However:

• It has an additional argument correlation, which specifies the cor-
relation structure.

• This is built with various correlation models; we use corExp for expo-
nential spatial correlation, which is what we fit for the OLS residuals,

– The form names the dimensions, here 2D with the Easting and
Northing.

– We initialize the search for the correlation structure parameters
with the value argument, a list of the initial values. Here we only
specify the range.

– Our fitted variogram model for the OLS residuals showed a zero
nugget, so here the function should not fit a nugget. So we set
the nugget argument to FALSE.15

Note: For a list of the predefined model forms see ?corClasses. Users can
also define their own corStruct classes.

require(nlme)
vmf.r.ols[1:2,]

model psill range
1 Nug 1435.842 0.00
2 Exp 37382.603 12106.96

m.gls <- gls(model=ANN_GDD50 ~ sqrt(ELEVATION_) + N,
data=ne.df,
correlation=corExp(

15 The nugget could also be fixed at a user-specified value.

28

value=c(vmf.r.ols[2,"range"]),
form=~E + N,
nugget=FALSE))

The gls function is not guaranteed to find a valid correlation structure.
First, there may be no spatial correlation of the residuals. Second, we may
have specified an inappropriate model form. Third, if the starting values are
not close to good fits, the optimization method may not find the correct fit.
Therefore it is crucial to check the results of the model fitting to see if they
are reasonable.

Task 23 : Display the model summary. •

This shows both the linear model coefficients and the spatial correlation
structure.
summary(m.gls)

Generalized least squares fit by REML
Model: ANN_GDD50 ~ sqrt(ELEVATION_) + N
Data: ne.df
AIC BIC logLik
4120.113 4138.665 -2055.056
##
Correlation Structure: Exponential spatial correlation
Formula: ~E + N
Parameter estimate(s):
range
17456.99
##
Coefficients:
Value Std.Error t-value p-value
(Intercept) 3136.3707 44.03754 71.22039 0
sqrt(ELEVATION_) -30.0448 1.41085 -21.29546 0
N -0.0019 0.00011 -16.64114 0
##
Correlation:
(Intr) s(ELEV
sqrt(ELEVATION_) -0.888
N 0.319 -0.183
##
Standardized residuals:
Min Q1 Med Q3 Max
-2.36510335 -0.68842210 -0.01831242 0.74010041 3.00789760
##
Residual standard error: 217.344
Degrees of freedom: 305 total; 302 residual

Task 24 : Display the confidence intervals for the coefficients. •

The intervals function of the nlme gives approximate confidence intervals
of the GLS fit.
intervals(m.gls, level=0.95)$coef

lower est. upper
(Intercept) 3.049711e+03 3.136371e+03 3.223030e+03
sqrt(ELEVATION_) -3.282113e+01 -3.004478e+01 -2.726843e+01
N -2.135757e-03 -1.909907e-03 -1.684056e-03
attr(,"label")
[1] "Coefficients:"

29

These intervals seem fairly wide, indicating that the model is perhaps not
sufficiently specified to capture all the reasons for variation in GDD50 over
this area..

Task 25 : Display the correlation structure fit by gls. •
intervals(m.gls, level=0.95)$corStruct

lower est. upper
range 12850.43 17456.99 23714.9
attr(,"label")
[1] "Correlation structure:"

Q9 : What is the 95% confidence interval of the range parameter? Does
this seem narrow or wide? Jump to A9 •

Task 26 : Compare with the correlation structure estimated from the OLS
residuals. •
intervals(m.gls, level=0.95)$corStruct

lower est. upper
range 12850.43 17456.99 23714.9
attr(,"label")
[1] "Correlation structure:"

vmf.r.ols[2,"range"]

[1] 12106.96

Q10 : How closely does the correlation structure fitted by GLS match that
estimated from the variogram of the OLS residuals? Jump to A10 •

Task 27 : Plot the actual vs. model fits on a 1:1 scatterplot. •
plot(ne.m$ANN_GDD50 ~ predict(m.gls),

col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by GLS",
ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid()
abline(0,1)

30

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by GLS

A
ct

ua
l

NJ
NY
PA
VT

The fit clusters well around the 1:1 line (good accuracy) but is diffuse (low
precision).

5.3 Spatial correlation of GLS model residuals

As with the OLS model (§4.4), the GLS residuals may show spatial correla-
tion. We examine this with an empirical variogram and then fit a variogram
model.

Task 28 : Display a bubble plot of the model residuals. •

We use the function defined in the OLS analysis, but now with a different
field.
ne.m$gls.resid <- residuals(m.gls)
summary(ne.m$gls.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-514.041 -149.624 -3.980 8.496 160.856 653.749

bubble.sf("ne.m", "gls.resid", "residuals, GDD50F", "GLS")

31

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− residuals, GDD50F

200

400

600

−, overprediction

+, underprediction

GLS

Q11 : Does GLS remove the spatial correlation? Describe the spatial
correlation structure of the GLS residuals. Jump to A11 •

These residuals should show the spatial correlation discovered in the REML
fit.

Task 29 : Display a variogram of the GLS residuals, with the variogram
model estimated as part of the GLS fit. •

This fit gives the range; we estimate the total sill from the overall variance.
Knowing these variogram parameters, we construct a variogram model with
the vgm function: We estimate the total sill as the variance of the residuals.
Since there is no nugget variance in this model, we do not have to adjust it
downward for the proportional nugget.
v.r.gls <- variogram(gls.resid ~ 1, ne.m, cutoff=120000, width=12000)
(vmf.r.gls <- vgm(psill=var(ne.m$gls.resid),

model="Exp",
range=intervals(m.gls)$corStruct["range","est."],
nugget=TRUE))

model psill range
1 Nug 1.00 0.00
2 Exp 44558.48 17456.99

plot(v.r.gls, pl=T, model=vmf.r.gls)

32

distance
se

m
iv

ar
ia

nc
e

10000

20000

30000

40000

20000 40000 60000 80000 100000

31

186

349
516 567

691

747 795 867 927

Q12 : How well does this model fit the empirical variogram of the GLS
residuals? Jump to A12 •

5.4 * Fitting a GLS correlation structure with a nugget variance

In the previous § we built a model of spatial dependence of the residuals
using the corExp model for exponential spatial correlation. Because our
analysis of the OLS residual variogram in §4.4, we did not fit a nugget, by
specifying the nugget argument to FALSE. In other analyses there may well
be a nugget effect to be fit, so here we show how to do that, and the effect
it has on the correlation structure fitted by gls.

In this example an exponential model has almost no nugget, so we select
a spherical model that is nearly linear near the origin. We estimate the
starting parameters from the empirical variogram.
plot(v.r.ols, pl=T)

33

distance

se
m

iv
ar

ia
nc

e

10000

20000

30000

40000

20000 40000 60000 80000

70

369

643 794 945

1061

269

The total sill appears to be ≈ 35000 (ANN_GDD50)2, the nugget ≈ 15000
(ANN_GDD50)2, so, the partial sill is ≈ 20000 (ANN_GDD50)2; the range
(where the spherical model reaches the sill) ≈ 40000 m.
(vmf.r.ols.sph <- fit.variogram(v.r.ols,

vgm(psill=20000, model="Sph",
range=40000, nugget=15000)))

model psill range
1 Nug 13426.14 0.0
2 Sph 24629.99 37585.4

plot(v.r.ols, pl=T, model=vmf.r.ols.sph)

distance

se
m

iv
ar

ia
nc

e

10000

20000

30000

40000

20000 40000 60000 80000

70

369

643 794 945

1061

269

34

This does not fit too badly, and clearly has a substantial nugget. Our ini-
tial estimates were close to the fitted values. This must be converted to a
proportional nugget, i.e., the proportion of the total sill represented by the
nugget.
(prop.nugget <- vmf.r.ols.sph[1,"psill"]/sum(vmf.r.ols.sph[,"psill"]))

[1] 0.3527983

The nugget is about 35% of the total sill, with this model. We now use
this in gls, substituting corSpher to specify a spherical model of spatial
dependence.

To include a nugget variance, we must:

1. specify nugget argument as TRUE;

2. expand the value argument to a two-element list: (1) the starting
value of the range, as before; and (2) the starting value of the nugget.

m.gls.2 <- gls(model=ANN_GDD50 ~ sqrt(ELEVATION_) + N,
data=ne.df,
correlation=corSpher(

value=c(vmf.r.ols.sph[2,"range"], prop.nugget),
form=~E + N,
nugget=TRUE))

We compare the fitted correlation structures:
intervals(m.gls, level=0.95)$corStruct

lower est. upper
range 12850.43 17456.99 23714.9
attr(,"label")
[1] "Correlation structure:"

intervals(m.gls.2, level=0.95)$corStruct

lower est. upper
range 2.271152e+05 3.014994e+05 4.004629e+05
nugget 2.565108e-01 4.622866e-01 6.817665e-01
attr(,"label")
[1] "Correlation structure:"

The nugget proportion has been fit as 0.462, somewhat higher than our
original estimate 0.353.

Recall that the range parameter of the exponential model is 1/3 of the
effective range, so to compare them:
intervals(m.gls)$corStruct["range", 2]*3

[1] 52370.98

intervals(m.gls.2)$corStruct["range", 2]

[1] 301499.4

The effective range is much longer, about 300 km for the spherical model with
nugget, compared to about 50 km for the exponential model with no nugget.
This seems unrealistic when we compare it with the residual variogram. The
spherical model is thus not appropriate; we showed it here in order to explain
how to fit a proportional nugget, if the empirical residual variogram suggests

35

that there is a nugget variance.

We can also compare the regression coefficients:
intervals(m.gls, level=0.95)$coef[,2]

(Intercept) sqrt(ELEVATION_) N
3.136371e+03 -3.004478e+01 -1.909907e-03

intervals(m.gls.2, level=0.95)$coef[,2]

(Intercept) sqrt(ELEVATION_) N
3.209772e+03 -3.241043e+01 -1.658746e-03

The changed spatial correlation structure has considerably changed the re-
gression coefficients.

5.5 Comparing OLS and GLS models

How much has accounting for the spatial correlation of the model residuals
affected the linear models?

Task 30 : Compare the coefficients of the GLS and OLS models. Compute
the relative change. •
coefficients(m.gls)

(Intercept) sqrt(ELEVATION_) N
3.136371e+03 -3.004478e+01 -1.909907e-03

coefficients(m.ols)

(Intercept) sqrt(ELEVATION_) N
3.150881e+03 -3.040452e+01 -1.952152e-03

round(100*(coefficients(m.gls) - coefficients(m.ols))/coefficients(m.ols),2)

(Intercept) sqrt(ELEVATION_) N
-0.46 -1.18 -2.16

Q13 : How much have the linear model coefficients changed from the OLS
to the GLS fit? What explains the change in coefficients? Jump to A13 •

We can see this spatially by comparing the residuals.

Task 31 : Compute the difference between the GLS and OLS residuals, add
them to the spatial points, and display as a bubble plot. •

We use a different colour scheme to emphasize that this is the difference
between residuals, not the residuals themselves.
ne.m$diff.gls.ols.resid <- (ne.m$gls.resid - ne.m$ols.resid)
summary(ne.m$diff.gls.ols.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-17.825 2.088 7.275 8.496 15.631 29.544

bubble.sf("ne.m", "diff.gls.ols.resid", "residual difference", "GLS - OLS")

36

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− residual difference

10

20

−, overprediction

+, underprediction

GLS − OLS

Q14 : Where are the largest differences between the OLS and GLS residu-
als? Jump to A14
•

The coefficient for elevation was reduced by a smaller amount, and it is for
the square root. To visualize this effect, we can use a scatterplot of the
change in residuals vs. this marginal predictor.

Task 32 : Display a scatterplot of change in residuals vs. the square root of
elevation. •

We can make the plot more informative by colouring the points by state and
making their size proportional to the target variable
ggplot() +

geom_point(aes(x=sqrt(ne.m$ELEVATION_), y=ne.m$diff.gls.ols.resid,
size=ne.m$ANN_GDD50, colour=ne.m$STATE)) +

xlab("Sqrt(Elevation)") +
ylab("GLS - OLS residual") +

geom_hline(yintercept=0, linewidth=1.2) +
labs(colour = "State", size = "Annual GDD50F")

37

−20

−10

0

10

20

30

0 20 40 60
Sqrt(Elevation)

G
LS

 −
 O

LS
 r

es
id

ua
l

State

NJ

NY

PA

VT

Annual GDD50F

1000

2000

3000

4000

This shows clearly that GLS residuals are larger at the lower elevations,
and that the largest adjustments tend to be at the largest GDD50. Note
that there would be a confounding effect if the two predictors (elevation and
Northing) were not almost independent, as they are in this case.

So in combination, a southerly, low-lying station will have the largest positive
GLS-OLS residuals, i.e., GLS predicts higher than OLS; a northerly, high-
elevation station the largest negative residuals.

Task 33 : Display the station name, elevation, and coördinates of the most
positive and negative residuals. •
ix <- which.max(ne.m$diff.gls.ols.resid)
ne.df[ix,c("STATION_NA","STATE","ELEVATION_","N","E")]

STATION_NA STATE ELEVATION_ N E
2859 CAPE MAY 2 NW NJ 20 -393922.9 92756.51

ix <- which.min(ne.m$diff.gls.ols.resid)
ne.df[ix,c("STATION_NA","STATE","ELEVATION_","N","E")]

STATION_NA STATE ELEVATION_ N E
4716 MOUNT MANSFIELD VT 3950 230248.4 252835.5

The largest negative residual (GLS reduced the prediction the most) is for
Mt. Mansfield (VT), the highest elevation station in the dataset, and near
the N limit. The largest positive residual (GLS increased the prediction
the most) is for Cape May (NJ), just above sea level and the southernmost
station.

Conclusion: accounting for spatial correlation in the residuals significantly
changed the linear model, resulting in differences up to 30 GDD50.

6 Prediction over the regional grid by OLS and GLS

A natural question is how target variables vary over the entire study area, not
just at the observation points – this is the interpolation (or extrapolation)

38

problem. For regional studies we want to predict and visualize over the
entire area; i.e., we want to produce a map of the target variable. For this
we need the predictors used in the models at a set of grid cells covering the
whole study area. Point predictions are then made at the centre of each grid
cell.

These have been prepared in the companion tutorial “Regional mapping of
climate variables from point samples: Data preparation” and loaded with
the points dataset in 3, above.

Task 34 : Predict over the grid with the OLS and GLS models, add the
results to the dataframe, and summarize them. •
dem.ne.m.df$pred.ols <- predict(m.ols, newdata=dem.ne.m.df)
dem.ne.m.df$pred.gls <- predict(m.gls, newdata=dem.ne.m.df)
summary(dem.ne.m.df[,-(1:3)])

dist.lakes dist.coast mrvbf
Min. : 0 Min. : 2.3 Min. :0.000000
1st Qu.: 84666 1st Qu.:126409.8 1st Qu.:0.008421
Median :222394 Median :276842.2 Median :0.380940
Mean :228099 Mean :275295.6 Mean :0.947745
3rd Qu.:346447 3rd Qu.:406957.9 3rd Qu.:1.787373
Max. :648952 Max. :708701.1 Max. :3.991617
tri3 pop15 pop2pt5 pred.ols
Min. : 0.00 Min. :0.0000 Min. :0.000 Min. : 877
1st Qu.: 10.66 1st Qu.:0.9855 1st Qu.:0.231 1st Qu.:2004
Median : 29.11 Median :1.4808 Median :1.159 Median :2332
Mean : 39.98 Mean :1.4046 Mean :1.114 Mean :2474
3rd Qu.: 57.30 3rd Qu.:1.9091 3rd Qu.:1.648 3rd Qu.:2821
Max. :371.70 Max. :3.8818 Max. :4.418 Max. :3926
pred.gls
Min. : 892.9
1st Qu.:2003.9
Median :2327.1
Mean :2466.6
3rd Qu.:2806.5
Max. :3894.9

Task 35 : Create a function to display prediction maps using ggplot. •

One purpose of a user-defined function is to make a consistent approachuser-defined
function to a repetitive task. In this tutorial we will make many maps showing the

predictions of a mapping method over the study area – here we already have
two, OLS and GLS. For consistency we define a function, using the function
function (!). The function is assigned to a workspace name, and has a set of
arguments with names that are used within the function.

Here since we know we always want to show the known points on the map
(to show the discrepancy between predicted and known at the points) we
hard-code that part into the function, and do not make it an argument. Also,
we know the map data source will be a field in the dem.ne.m.df object, so
that is also hard-coded.

The default colour palette (§A) is YlGnBu, a “sequential” palette from a
“low” to a “high” value. This can be changed by the caller to show other
kinds of maps.

39

We include an option .plot.limits, default NULL, to specify the limits of
the legend scale, to allow side-by-side comparison of maps.

Arguments:

.prediction : name of the field in dem.ne.m.df to plot (character string)

.plot.title : title for the map (character string)

.legend.title : title for the legend (character string)

.plot.limits : range of values for the legend (two-element numeric vector); default
”NULL”, i.e., taken from the data

.palette : name of a colour palette (character string); default ”YlGnBu”
display.prediction.map <- function(.prediction,

.plot.title,

.legend.title,

.plot.limits=NULL,

.palette="YlGnBu") {
ggplot(data=dem.ne.m.df) +

note must find the indirect name in the dataframe
geom_point(aes(x=E, y=N,

color=.data[[as.name(.prediction)]])) +
xlab("E") + ylab("N") + coord_fixed() +
geom_point(aes(x=E, y=N, color=ANN_GDD50),

data=ne.df, shape=I(20)) +
ggtitle(.plot.title) +
scale_colour_distiller(name="GDD50",

space="Lab",
palette=.palette,
limits=.plot.limits)

}

Task 36 : Plot these on the same visual scale, over the entire bounding box.
•

The reason to visualize over the bounding box is to see the effect of extrap-
olation of a linear model beyond its calibration range, in this case Northing
and elevation.

We now call the function for both predictions. The argument names used
within the function are assigned to the names we give when calling the
function. So the function operates on the map. Note that we use the same
limits for the colour ramp, so the two maps can be directly compared.
ols.ix <- which(names(dem.ne.m.df)=="pred.ols")
gls.ix <- which(names(dem.ne.m.df)=="pred.gls")
set up limits of the scale for the target variable
use the extremes +/-10 GDD, to make sure that all values are shown
(gdd.pred.lim <- round(

c(min(dem.ne.m.df[,c(ols.ix, gls.ix)])-10, max(dem.ne.m.df[,ols.ix, gls.ix])+10)))

[1] 867 3936

display.prediction.map("pred.ols", "Annual GDD, base 50F, OLS prediction",
"GDD50", gdd.pred.lim)

display.prediction.map("pred.gls", "Annual GDD, base 50F, GLS prediction",
"GDD50", gdd.pred.lim)

40

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50

1000

2000

3000

Annual GDD, base 50F, OLS prediction

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

Annual GDD, base 50F, GLS prediction

Task 37 : Compute the differences between the OLS and GLS predictions,
add them to the data frame, and display them. •
summary(dem.ne.m.df$diff.gls.ols <-

dem.ne.m.df$pred.gls - dem.ne.m.df$pred.ols)

41

Min. 1st Qu. Median Mean 3rd Qu. Max.
-31.2889 -15.3346 -4.9698 -7.6704 0.2453 16.0963

The OLS and GLS predictions only vary slightly.

We also define a function to display difference maps. The default colour
palette (§A) is Spectral, used for “diverging” palettes with a natural zero
(so the two extremes are the most contrasting). This can be changed by the
caller to show other kinds of maps.
display.difference.map <- function(.diff.map.name,

.diff.map.title,

.legend.name,

.palette="Spectral") {
ggplot(data=dem.ne.m.df) +

geom_point(aes(x = .data[["E"]], y = .data[["N"]],
color=.data[[as.name(.diff.map.name)]])) +

xlab("E") + ylab("N") + coord_fixed() +
ggtitle(.diff.map.title) +
scale_colour_distiller(name=.legend.name,

space="Lab",
palette=.palette)

}

display.difference.map("diff.gls.ols",
"Annual GDD, base 50F, GLS - OLS predictions",
"+/- GDD50")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

+/− GDD50

−30

−20

−10

0

10

Annual GDD, base 50F, GLS − OLS predictions

The GLS model predicts slightly higher to the north and at higher elevations.

7 Improving the trend prediction by Regression Kriging

In both GLS and OLS we have seen that the residuals are spatially-correlated.
In §5.3 we fitted a variogram model to the GLS residuals:

42

print(vmf.r.gls)

model psill range
1 Nug 1.00 0.00
2 Exp 44558.48 17456.99

This exponential model has an effective spatial correlation range of about
52 km. So the residual at a prediction point is not simply the residual from
the trend surface, but also depends on surrounding trend surface residuals,
within this radius. Every location within the four-state area is within this
effective range of one or more stations, and so the trend surface prediction
can be locally adjusted in two steps:

1. krige the residuals to obtain the local deviation from the GLS trend
surface. This deviation can be either “above” or “below” the surface;

2. add this to the trend surface prediction.

This procedure is called Regression Kriging16 [8].

The “kriging” part of the “regression kriging” term only applies to the
residuals from the trend, and thus uses a variogram model and correlation
structure for these, not for the original values. Most of the spatial variation
has been taken out by the trend surface (the “regression”, 𝑍∗(s)); this is the
“regional” model. The kriging step is to adjust it locally (the “local spatial
dependence” 𝜀(s)), referring to Equation 1, the universal model of spatial
distribution Note that there will still be unexplained variation (“pure noise”,
𝜀′(s).

Task 38 : Summarize the GLS trend surface residuals with a histogram and
numerical summary. •
summary(ne.m$gls.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-514.041 -149.624 -3.980 8.496 160.856 653.749

hist(ne.m$gls.resid, freq=F,
xlab="GDD50",
main="GLS residuals")

rug(ne.m$gls.resid)

16 ‘Kriging’ is named for the South African mining geostatistician Danie Krige (1919–2013),
who developed the method in the 1950’s for estimating gold reserves. His empirical
method was formalized in the 1960’s by Georges Matheron (1930–2000) working at the
École de Mines in France. The theory had been previously developed in the 1930’s by
Andrey Kolmogorov (1903-1987) but was not practical until digital computers had been
developed.

43

GLS residuals

GDD50

D
en

si
ty

−600 −400 −200 0 200 400 600

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Notice that the mean residual is not zero. This is because GLS trades
unbiasedness for precision of the trend coefficients.

Now that we have (1) the known points; (2) a fitted authorized variogram
model, we can predict at any location. The following optional section ex-
plains the mathematics of the OK system.

7.1 * The Ordinary Kriging system

OK predicts at an unknown point as a weighted linear average from the 𝑛
known points with value 𝑧𝑖 to obtain the value at each unknown point 𝑧0
(Eqn.14).

𝑧0 =
𝑛∑
𝑖=1

𝜆𝑖𝑧𝑖 (14)

The weights 𝜆𝑖 must sum to 1 (i.e., estimation of the mean is unbiased).
Many weighting schemes can satisfy this equation, for example nearest neigh-
bour (Thiessen polygons) (§12.5), inverse-distance weighting (§12.4), aver-
age of points within some radius, or average of some number of neighbours.
The unique aspect of OK is that these weights are selected to minimize the
prediction variance – this is the reason OK is called a “Best Unbiased Linear
Predictor” (BLUP).

Note: Always remember, this “best” is with reference to the fitted variogram
model. And there is no way to objectively know if that model is correct. So
whether OK is “best” in the real world is not proveable.

In OK the weights 𝜆𝑖 are determined from the Ordinary Kriging System,
which is derived from an expression for the prediction variance, which is
minimized to derive these equations.

Weights are found by solving:

44

A𝜆 = b (15)

where:

A =



𝛾(x1, x1) 𝛾(x1, x2) · · · 𝛾(x1, x𝑁) 1
𝛾(x2, x1) 𝛾(x2, x2) · · · 𝛾(x2, x𝑁) 1

...
... · · ·

...
...

𝛾(x𝑁 , x1) 𝛾(x𝑁 , x2) · · · 𝛾(x𝑁 , x𝑁) 1
1 1 · · · 1 0



𝜆 =



𝜆1
𝜆2
...
𝜆𝑁
𝜓


b =



𝛾(x1, x0)
𝛾(x2, x0)

...
𝛾(x𝑁 , x0)

1


In the A matrix the upper-left block 𝑁 × 𝑁 block is the spatial correlation
structure of the observations; these are derived from the fitted variogram
model. The last row ensures unbiasedness in estimating the spatial mean.
The right-hand column is used to find the LaGrange multiplier that mini-
mizes the variance. The kriging variance at a point is given by the scalar
product of the weights (and multiplier) vector 𝜆 with the right-hand side of
the kriging system.

𝜎̂2(x0) = b𝑇𝜆 (16)

Note that 𝜆 includes as its last element 𝜓, which depends on covariance
structure of the observation points. Note also that the prediction variance
is computed only from semivariances, not from data values.

7.2 Predicting the residuals by Ordinary Kriging

Task 39 : Predict the deviation from the trend surface at each location on
the grid, using Ordinary Kriging (OK) of the GLS residuals, and display its
summary. •

Note: We use OK instead of Simple Kriging (SK) because the spatial mean
of the GLS residuals may not be zero. The non-spatial mean of the GLS
mean is not required to be zero, as in OLS.

There are several R packages that implement kriging. Here we use the krige
function of the gstat package, which uses the fitted variogram model as in
model argument.

The points on which to krige are centres of the grid cells, which we converted
to an sf geometry.

45

class(dem.ne.m.sf)

[1] "sf" "data.frame"

system.time(
ok.gls.resid <- krige(gls.resid ~ 1,

loc=ne.m, newdata=dem.ne.m.sf,
model=vmf.r.gls)

)

[using ordinary kriging]
user system elapsed
2.895 0.006 2.903

summary(ok.gls.resid)

var1.pred var1.var geometry
Min. :-465.7709 Min. : 748 POINT :40052
1st Qu.: -42.1851 1st Qu.:30931 epsg:NA : 0
Median : -0.0499 Median :38400 +proj=aea ...: 0
Mean : -0.6000 Mean :36349
3rd Qu.: 30.2732 3rd Qu.:44759
Max. : 574.7911 Max. :44900

hist(ok.gls.resid$var1.pred,
main = "OK deviations from GLS trend surface", xlab = "GDD50")

abline(v=0, col="red")
rug(ok.gls.resid$var1.pred)

OK deviations from GLS trend surface

GDD50

F
re

qu
en

cy

−400 −200 0 200 400 600

0
20

00
40

00
60

00
80

00
10

00
0

Half of the adjustments are between about ±40 GDD50, so not very many;
however there are some quite large adjustments at the extremes. The kriging
prediction variance has a very low value at a grid cell centre that must be
close to an observation, but otherwise is fairly large; the median prediction
standard deviation is 196 GDD50.

Task 40 : Add this residual and its prediction variance to the GLS trend
surface data frame. •

46

dem.ne.m.df$ok.gls.resid <- ok.gls.resid$var1.pred
dem.ne.m.df$ok.gls.resid.var <- ok.gls.resid$var1.var

Task 41 : Display a map of the deviations. •
ggplot() +

geom_point(aes(x=E, y=N, colour=ok.gls.resid), data=dem.ne.m.df) +
xlab("E") + ylab("N") + coord_fixed() +
ggtitle("Residuals from GLS trend surface, GDD base 50F") +
scale_colour_distiller(name="GDD50", space="Lab", palette="RdBu")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

−250

0

250

500

Residuals from GLS trend surface, GDD base 50F

Q15 : Where are the largest adjustments to the GLS trend? Jump to
A15 •

Q16 : Notice there is no adjustment further than about 50 km from a
station, why? Jump to A16 •

The predictions at these points are the spatial mean of the GLS residuals
(not necessarily their arithmetic mean):
mean(dem.ne.m.df$ok.gls.resid) # spatial mean over the grid

[1] -0.6000178

mean(ne.m$gls.resid) # arithmetic mean at observation points

47

[1] 8.495601

Task 42 : Display the kriging prediction standard deviation of the residuals.
•

This is the square root of the prediction variance, so in the same units as the
prediction. We also show the observation points, to show how the kriging
prediction variance depends on the point configuration.
ggplot() +

geom_point(aes(x=E, y=N, colour=sqrt(ok.gls.resid.var)),
data=dem.ne.m.df) + xlab("E") + ylab("N") +

coord_fixed() +
geom_point(aes(x=E, y=N), data=ne.df, size=0.5,

colour="black", shape=I(20)) +
ggtitle("Residuals from GLS trend, kriging prediction standard deviation") +
scale_colour_distiller(name="GDD50", space="Lab",

palette="BuPu", trans="reverse")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

50

100

150

200

Residuals from GLS trend, kriging prediction standard deviation

7.3 The GLS-Regression Kriging prediction

We have two predictions: the trend and the deviations from it. Adding these
will give a final prediction.

Task 43 : Add the kriged GLS residuals to the trend surfaces for a final
GLS-RK prediction. •

48

summary(dem.ne.m.df$pred.rkgls <-
dem.ne.m.df$pred.gls + dem.ne.m.df$ok.gls.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
921.4 1973.9 2354.9 2466.0 2827.7 3977.5

display.prediction.map("pred.rkgls", "Annual GDD, base 50F, GLS-RK prediction",
"GDD50")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD, base 50F, GLS−RK prediction

Q17 : How does this compare to the GLS trend surface map? Can you see
the local adjustments? Jump to A17 •

7.4 Area of Applicability

In the previous section we predicted over a bounding box covering the four
States. This predicted into areas where there were no observations, e.g.,
parts of CT, MA, NH, MD as well as Ontario. This is called extrapolation,
as opposed to interpolation. Of course, some areas in the four States are
outside the convex hull of the points, e.g., near the borders of these four
States adjacent to States not in the study area. But here, (1) observation
points are never far away, because (2) points were chosen to cover the area.
Only (1) is valid outside the study area, and only for a limited distance.

Q18 : For what areas in the bounding box, outside the four States, are you

49

confident that the prediction is as good as that inside? (Hint: for the OK
part, see the kriging prediction variance map.) Jump to A18 •

Also, the map user from these four States will expect a map showing only
these.

Task 44 : Limit the map to the four States. •

The map is now a dataframe. Convert to a SpatRaster, a class defined by
the terra package, and then mask it with the State polygons.
require(terra)
str(dem.ne.m.df)

'data.frame': 40052 obs. of 15 variables:
$ E : num -356674 -353224 -349774 -346324 -342874 ...
$ N : num 288086 288086 288086 288086 288086 ...
$ ELEVATION_ : num 574 574 574 574 574 ...
$ dist.lakes : num 172849 171344 169500 167491 165530 ...
$ dist.coast : num 708701 706111 703528 700953 698386 ...
$ mrvbf : num 0 0 0 0 0 0 0 0 0 0 ...
$ tri3 : num 0 0 0.00195 0.02403 0.13367 ...
$ pop15 : num 0 0 0 0 0 0 0 0 0 0 ...
$ pop2pt5 : num 0 0 0 0 0 0 0 0 0 0 ...
$ pred.ols : num 1860 1860 1860 1860 1860 ...
$ pred.gls : num 1866 1866 1866 1866 1866 ...
..- attr(*, "label")= chr "Predicted values"
$ diff.gls.ols : num 6.28 6.28 6.28 6.28 6.28 ...
..- attr(*, "label")= chr "Predicted values"
$ ok.gls.resid : num 0.000379 0.000404 0.000432 0.000462 0.000495 ...
$ ok.gls.resid.var: num 44900 44900 44900 44900 44900 ...
$ pred.rkgls : num 1866 1866 1866 1866 1866 ...
..- attr(*, "label")= chr "Predicted values"

by default the first two fields are taken as the coordinates
get the CRS from the plygon object that will be the mask
pred.ne.m.rast <- rast(dem.ne.m.df, crs=st_crs(state.ne.m)$proj4string)
print(pred.ne.m.rast)

class : SpatRaster
dimensions : 186, 228, 13 (nrow, ncol, nlyr)
resolution : 3450, 3704 (x, y)
extent : -392899.3, 393700.7, -399006.4, 289937.6 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=aea +lat_0=42.5 +lon_0=-76 +lat_1=39 +lat_2=44 +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs
source(s) : memory
names : ELEVATION_, dist.lakes, dist.coast, mrvbf, tri3, pop15, ...
min values : 0.000, 0.0, 2.326731e+00, 0.000000, 0.000, 0.00000, ...
max values : 4156.336, 648951.9, 7.087011e+05, 3.991617, 371.698, 3.88183, ...

pred.ne.m.rast <- mask(pred.ne.m.rast, state.ne.m)
terra::plot(pred.ne.m.rast)

50

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

0
500
1000
1500
2000
2500
3000
3500

ELEVATION_

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

0

100000

200000

300000

400000

500000
dist.lakes

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

100000

200000

300000

400000

500000

dist.coast

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

mrvbf

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

0
50
100
150
200
250
300
350

tri3

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

pop15

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

0.0

1.0

2.0

3.0

4.0

pop2pt5

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

1000

1500

2000

2500

3000

3500

pred.ols

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

1000

1500

2000

2500

3000

3500

pred.gls

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

−30

−20

−10

0

10

diff.gls.ols

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

−400

−200

0

200

400

ok.gls.resid

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

10000

20000

30000

40000

ok.gls.resid.var

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

1000

1500

2000

2500

3000

3500

pred.rkgls

The default colour ramp rev(grDevices::terrain.colors(50)) is not suit-
able for all the layers. In the previous value maps we used the "YlGnBu"
palette from the RColorBrewer package, which was called from within the
ggplot2 plotting functions. However, for the plot method applied to terra
objects, we must load that package and explicitly call the palette with the
brewer.pal function.

Any single layer can be selected:
require(RColorBrewer)
terra::plot(pred.ne.m.rast, y = "pred.rkgls",

col = colorRampPalette(brewer.pal(n = 9, name = "YlGnBu"))(64),
main = "RK-GLS prediction, annual GDD50F")

51

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

1000

1500

2000

2500

3000

3500

RK−GLS prediction, annual GDD50F

8 Kriging with external drift (KED)

Another way to predict using both the trend and local deviations from it is
the one-step method Kriging with External Drift (KED)17. This is a form of
kriging, i.e., a linear weighted average from the 𝑛 known points with value
𝑧𝑖 to obtain the value at each unknown point 𝑧0 (Eqn.17). The weights 𝜆𝑖
must sum to 1 (i.e., estimation of the mean is unbiased), and are selected to
minimize the prediction variance – this is the reason OK is called a “Best
Unbiased Linear Predictor” (BLUP).

𝑧0 =
𝑛∑
𝑖=1

𝜆𝑖𝑧𝑖 (17)

The difference between KED and OK (§7.1) is that KED also includes co-
variates in the kriging system, so that the linear trend with covariates and
the local deviations at each prediction point are solved together to obtain
the weights 𝜆.
17 KED is mathematically equivalent to what is called Universal Kriging (UK); that term

is often reserved for KED when only coördinates are used as covariables.

52

8.1 * The Universal Kriging system

The weights 𝜆𝑖 are determined from the Universal Kriging System, which is
derived from an expression for the prediction variance, which is minimized
to derive these equations.

Weights are found by solving:

AU𝜆U = bU (18)

where

AU =



𝛾 (x1,x1) ·· · 𝛾 (x1,x𝑁) 1 𝑓1 (x1) ·· · 𝑓𝑘 (x1)
... · · ·

...
...

... · · ·
...

𝛾 (x𝑁 ,x1) ·· · 𝛾 (x𝑁 ,x𝑁) 1 𝑓1 (x𝑁) ·· · 𝑓𝑘 (x𝑁)
1 · · · 1 0 0 · · · 0

𝑓1 (x1) ·· · 𝑓1 (x𝑁) 0 0 · · · 0

...
...

...
...

...
...

...
𝑓𝑘 (x1) ·· · 𝑓𝑘 (x𝑁) 0 0 · · · 0


In this matrix the upper-left block 𝑁 × 𝑁 block is the spatial correlation
structure of the residuals from the trend; these are derived from the fitted
variogram model. The lower-left 𝑘 ×𝑛 block (and its transpose in the upper-
right) are the trend predictor values at sample points. In KED these are
the covariate values at the prediction points; in UK these are the coördinate
values at these points. The rest of the matrix fits with 𝜆U and bU to set up
the solution:

𝜆U =



𝜆1

· · ·
𝜆𝑁

𝜓0

𝜓1

· · ·
𝜓𝑘


bU =



𝛾 (x1,x0)
...

𝛾 (x𝑁 ,x0)
1

𝑓1 (x0)
...

𝑓𝑘 (x0)


The 𝜆U vector contains the 𝑁 weights for the sample points and the 𝑘 + 1
LaGrange multipliers (1 for the overall mean and 𝑘 for the trend model).
The bU vector is structured like an additional column of Au, but referring to
the point to be predicted. This contains the semivariances of the prediction
point vs. the known points.

The kriging variance at a point is given by the scalar product of the weights
(and multiplier) vector 𝜆 with the right-hand side of the kriging system.

𝜎̂2(x0) = b𝑇𝑈𝜆𝑈 (19)

53

Good explanations of KED are from Webster and Oliver [24] and Goovaerts
[6]; in §12 we explain Ordinary Kriging (OK), where there is no trend, only
local interpolation.

8.2 Computing the empirical residual variogram

KED uses the krige method of the gstat package directly with the residual
variogram, and so does not require a separate regression prediction step.
KED as implemented by krige uses GLS to compute the trend component,
with a covariance structure specified by the analyst, generally from fitting
a variogram model to the residual variogram This differs from gls, which
computes the covariance structure by REML.

In gstat the residuals are estimated from a linear model fit, using the
variogram function with a formula for the trend. Since the covariance struc-
ture is not yet known, this must be by OLS.

Task 45 : Use the variogram function to compute the variogram of the
residuals from a model of GDD50 predicted by Northing and square root of
elevation, and fit an exponential model to it. Use a cutoff of 100 km and a
bin size of 16 km, to have enough points in the closest bin, and to avoid very
local effects. Compare to the variogram computed directly from the OLS
residuals in §4.4. •

We use the variogram function, but instead of a null formula (right-hand
side 1) to specify the spatial mean, we specify a formula for the trend. The
left-hand side is the variable of interest, not the residuals from a previous
step. However, since N is a predictor, there must be field in the object.
It is in the geometry field of the sf object, but not explicitly in the data
frame. So, we add it from the geometry, so it can be used in the linear model
formula for the residual variogram. The Northing is the second coördinate
in the coördinate matrix.

We need to do the same for the prediction object.
ne.m$N <- st_coordinates(ne.m)[, 2]
dem.ne.m.sf$N <- st_coordinates(dem.ne.m.sf)[, 2]

Now we can use these objects in KED.
v.ked <- variogram(ANN_GDD50 ~ sqrt(ELEVATION_) + N, locations=ne.m,

cutoff=100000, width=16000)
plot(v.ked, pl=T)

54

distance
se

m
iv

ar
ia

nc
e

10000

20000

30000

40000

20000 40000 60000 80000

70

369

643 794 945

1061

269

It is exactly the same empirical variogram as we computed in §4.4, because
these are exactly the same residuals from the same OLS solution to the same
linear model and dataset. The difference is that we don’t need to find the
trend surface coefficients, we just need the trend surface residuals in order
to compute the variogram for KED.

8.3 Fitting the residual variogram model

We require a continuous function of semivariance vs. separation, so that for
any separation we can compute the semivariance to be used in the kriging
equations. This must be an authorized variogram model.

Here, an exponential model appears to fit the empirical variogram of the
residuals; this is a common and the simplest choice of variogram model.

The fit.variogram function fits variogram models specified with the vgm
“variogram model” function. We initialize the weighted least-squares (WLS)
fit to the empirical variogram with our eyeball estimates.
(vmf.ked <- fit.variogram(v.ked, vgm(15000, "Exp", 20000, 20000)))

model psill range
1 Nug 1435.842 0.00
2 Exp 37382.603 12106.96

plot(v.ked, plot.numbers=TRUE, model=vmf.ked)

distance

se
m

iv
ar

ia
nc

e

10000

20000

30000

40000

20000 40000 60000 80000

70

369

643 794 945

1061

269

The effective range of the exponential model is three times the range pa-

55

rameter, so here about 363 km. This implies that there is local structure,
not explained by the covariables, to this range.

With this covariance structure, we can now predict by KED, again specifying
the dependence of the target variable on the covariables.

8.4 Predicting with KED

Task 46 : Compute the KED prediction and its variance over the prediction
grid. •

We call krige with a model formula that shows the linear dependence on
covariables, exactly the same formula that we used to compute the empirical
variogram of the residuals in the previous step. These two formulas must be
identical.
k.ked <- krige(ANN_GDD50 ~ sqrt(ELEVATION_)+ N, locations=ne.m,

newdata=dem.ne.m.sf, model=vmf.ked)

[using universal kriging]

summary(k.ked)

var1.pred var1.var geometry
Min. : 915.5 Min. : 3689 POINT :40052
1st Qu.:1984.0 1st Qu.:33102 epsg:NA : 0
Median :2350.7 Median :37415 +proj=aea ...: 0
Mean :2468.4 Mean :35264
3rd Qu.:2823.3 3rd Qu.:39500
Max. :3944.8 Max. :42441

Note that the kriging prediction variance is also computed; this is known
because by definition kriging minimizes it.

Task 47 : Display the prediction. •

To do this we add the prediction to the grid data frame and then display
this as a map.
dem.ne.m.df$pred.ked <- k.ked$var1.pred
display.prediction.map("pred.ked",

"Annual GDD, base 50F, KED prediction",
"GDD50")

56

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD, base 50F, KED prediction

The predictions will be slightly different from the RK-GLS predictions, be-
cause the spatial correlation of the residuals was estimated from the OLS
trend surface, from the GLS fit.

Task 48 : Compute and display the differences between RK-GLS and KED
over the grid. •
summary(dem.ne.m.df$diff.rkgls.ked <-

dem.ne.m.df$pred.rkgls - dem.ne.m.df$pred.ked)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-85.152 -17.335 -3.036 -2.370 9.744 93.423

Half of the differences are quite small, under about 15 GDD50. There are
a few larger differences, but all less than 100 GDD50 (compare with the
sample mean, 2518).

Display the locations of the differences:
display.difference.map("diff.rkgls.ked",

"Difference annual GDD base 50F, RK-GLS - KED",
"+/- GDD50")

57

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
+/− GDD50

−50

0

50

Difference annual GDD base 50F, RK−GLS − KED

The largest positive residuals (RK-GLS predicts higher) are along Lake Erie
and western Lake Ontario. The cooling lake effect which we saw in the OLS
residuals is increased in the GLS residuals, since the GLS trend predicts
somewhat lower than the OLS trend in this area. So the RK is higher here.
The largest negative residuals are in the Catskills and southern VT, where
the GLS trend predicted somewhat higher than the OLS trend.

Task 49 : Show the prediction limited to the four States. •
by default the first two fields are taken as the coordinates
pred.ked.rast <- rast(dem.ne.m.df, crs=st_crs(state.ne.m)$proj4string)["pred.ked"]
pred.ked.rast <- mask(pred.ked.rast, state.ne.m)
terra::plot(pred.ked.rast, y = "pred.ked",

col = colorRampPalette(brewer.pal(n = 9, name = "YlGnBu"))(64),
main = "KED prediction [N, sqrt(ELEVATION)], annual GDD50F")

58

−2e+05 0 2e+05

−
2e

+
05

0
2e

+
05

1000

1500

2000

2500

3000

3500

KED prediction [N, sqrt(ELEVATION)], annual GDD50F

Challenge: There is a strong positive anomaly (RK-GLS predicts higher
but just locally) near the Chazy station, on Lake Champlain in the centre
North. There are several nearby stations also on the Lake. What is the
reason for this anomaly?

In this section we have seen that KED has some practical advantages over
RK-GLS:

1. It is easier to implement;

2. The covariance structure is estimated beforehand, and there is no risk
that the procedure might not converge on a solution, as in REML;

3. It gives a prediction variance in the same step.

However, we can see from the results in this case study that there can be
some fairly large differences in predictions.

8.5 Accuracy assessment

An objective way to evaluate the predictive power of KED is by Leave-one-
out cross-validation (LOOCV). Here each point is removed from the dataset
in turn, and predicted by the others, using the fitted variogram model. If
the observation points well represent the total population, as they do here
by design of the weather station network, this gives a good estimate of the
prediction error.

Task 50 : Compute and summarize the LOOCV for this KED prediction.
•

The krige.cv function of the gstat package computes this:

59

kcv.ked <- krige.cv(ANN_GDD50 ~ sqrt(ELEVATION_)+ N, locations=ne.m, model=vmf.ked)

summary(kcv.ked$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-477.630 -138.430 -11.306 -1.444 130.210 645.663

Overall the results are fairly good, but there are some large prediction errors
at both extremes. An overall measure is the root of the mean squared error,
RMSE:
(loocv.ked.rmse <- sqrt(sum(kcv.ked$residual^2)/length(kcv.ked$residual)))

[1] 199.4083

Task 51 : Display a bubble plot of the LOOCV residuals. •
bubble.sf("kcv.ked", "residual", "GDD50", .title="LOOCV KED residuals")

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

−, overprediction

+, underprediction

+/− GDD50

200

400

600

LOOCV KED residuals

There are several regions with intermixed fairly large under- and over-
predictions; this means that in these regions there are local factors not
accounted for. Other regions are consistently over- or under-predicted (Ver-
mont mountains, Lake Ontario plain, respectively).

8.6 KED in a local neighbourhood

An advantage of KED over GLS-RK is that KED can be applied in some local
neighbourhood, so that the relation with the covariables (here, Northing,
Easting, square root of elevation) is re-fit at each prediction point. Besides
the obvious computational advantage (fewer points → less computation),
this allows a varying effect of the covariates over space. In our example,
it may be that the effect on GDD50 of +100 km Northing may be more
towards the south of the region than the north, or vice versa; or it may be

60

a smaller effect in a north-south trending large valley such as the Hudson
or Lake Champlain. The effect of elevation may be more, or less, in the
Adirondacks in northern New York compared to the Allegheny Plateau in
Pennsylvania.

Note: The linear model is not re-solved at each point; the UK system
(§8.1) implicitly includes these in the solution. The AUa matrix includes
the covariance betwen the neighbourhood points, as well as their values of
the covariates, and the bU vector includes the covariance between the neigh-
bourhood points and the prediction point, as well as the prediction point’s
covariate values.

Whether the kriging is global or local, the bU vector must be computed
at each prediction point. For local kriging a full AUa matrix of all the
observation points can be rapidly cut down to the set of local points closest
to the prediction point.

Note: This has some relation to Geographically-Weighted Regression, where
the trend surface is explicitly re-computed at each prediction point, using
only the points in some neighbourhood. But in local KED we also consider
the spatial correlation between the residuals of the local trend.

Task 52 : Recompute the KED prediction over the study area of §8.4 with
a local neighbourhood. •

Q19 : Why we not need or want to re-compute the residual variogram
model (§8.3)? Jump to A19 •

The krige package has two optional arguments that can be used to imple-
ment this:

1. nmax “maximum number of neighbours to use”;

2. maxdist “maximum distance to a point to use”; this can be used along
with nmin “minimum number of neighbours to use” to ensure that no
predictions are made with few points. This latter will produce NA
“not available” values if there are prediction points too far from the
minimum number

We prefer nmax because here the points are well-distributed, and we can use
the kriging prediction variance to find areas that are too poorly-predicted.

The obvious question is how to determine this number. One way is to
try different numbers and compare their cross-validation statistics (see the
Challenge at the end of this §). Here we choose to use 20% of the points,
i.e., 305/5 ≈ 61 to show how the method works.
ked.n.max <- 61 # change this to try other numbers of neighbours
k.ked.nn <- krige(ANN_GDD50 ~ sqrt(ELEVATION_)+ N, locations=ne.m,

newdata=dem.ne.m.sf, model=vmf.ked,
nmax=ked.n.max)

[using universal kriging]

summary(k.ked.nn)

61

var1.pred var1.var geometry
Min. : 906.4 Min. : 3829 POINT :40052
1st Qu.:1963.6 1st Qu.:33697 epsg:NA : 0
Median :2379.5 Median :38411 +proj=aea ...: 0
Mean :2468.2 Mean :37254
3rd Qu.:2859.3 3rd Qu.:42122
Max. :3947.8 Max. :69912

Task 53 : Display the prediction map. •
dem.ne.m.df$pred.ked.nn <- k.ked.nn$var1.pred
dem.ne.m.df$pred.ked.nn.sd <- sqrt(k.ked.nn$var1.var)
display.prediction.map("pred.ked.nn",

paste("Annual GDD, base 50F, KED prediction,",
ked.n.max, "nearest neighbours"),

"GDD50")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD, base 50F, KED prediction, 61 nearest neighbours

Task 54 : Compute and display a map of the difference in predictions
between the global and local KED predictions. •
summary(dem.ne.m.df$diff.ked <- dem.ne.m.df$pred.ked - dem.ne.m.df$pred.ked.nn)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-339.9301 -36.2570 11.5159 0.1955 54.9584 198.5996

display.difference.map("diff.ked",
paste("Difference annual GDD base 50F, KED global - KED",

ked.n.max,"nearest neighbours"),
"+/- GDD50")

62

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

+/− GDD50

−300

−200

−100

0

100

Difference annual GDD base 50F, KED global − KED 61 nearest neighbours

Q20 : Where are the largest differences? Explain. Jump to A20 •

Task 55 : Compute and display the cross-validation statistics; compare
them to global KED. •
kcv.ked.nn <- krige.cv(ANN_GDD50 ~ sqrt(ELEVATION_)+ N,

locations=ne.m, model=vmf.ked,
nmax=ked.n.max)

summary(kcv.ked.nn$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-430.555 -144.898 -18.085 -5.355 117.227 617.697

summary(kcv.ked$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-477.630 -138.430 -11.306 -1.444 130.210 645.663

(loocv.ked.nn.rmse <- sqrt(sum(kcv.ked.nn$residual^2)/length(kcv.ked.nn$residual)))

[1] 191.7587

(loocv.ked.rmse <- sqrt(sum(kcv.ked$residual^2)/length(kcv.ked$residual)))

[1] 199.4083

Q21 : Which KED, global or local, gives the best cross-validation results?
What can you conclude about the strength of regional to local effects on
GDD50? Jump to A21 •

Task 56 : Display a bubble plot of the difference between the global and

63

local cross-validation residuals. •
summary(kcv.ked$diff <- kcv.ked$residual - kcv.ked.nn$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-165.0122 -31.0292 0.0038 3.9111 36.4572 174.4893

bubble.sf("kcv.ked", "diff", "delta GDD50",
.title=paste("KED - KED",

ked.n.max, "nearest neighbour residuals"))

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− delta GDD50

50

100

150

−, overprediction

+, underprediction

KED − KED 61 nearest neighbour residuals

Q22 : Where are the largest differences? Does this seem to be geographically-
consistent? Can you explain? Jump to A22
•

Challenge: Experiment with different numbers of neighbours to find the
optimum for local KED.

Challenge: Since the trend surface is now fit locally, it may be that Easting
is significant in some parts of the region. Refit the global residual variogram
with this included in the linear model, and use it in the kriging prediction
formula. How much and where does this change the prediction?

8.7 * Demonstration that KED uses GLS to determine the trend

Above we stated that KED as implemented by krige uses GLS to compute
the trend component, with a covariance structure specified by the analyst,
i.e., from modelling the residual variogram. This section shows the difference
between this prediction and one where the trend is computed by OLS.

We first compute the OK trend surface using krige with a null model, that is,
not using any local information; this is the OLS prediction of the trend. This

64

is the equivalent of using the lm function, but is more convenient because it
directly produces a gridded data structure, as in kriging.
k.ok <- krige(ANN_GDD50 ~ sqrt(ELEVATION_)+ N, locations=ne.m,

newdata=dem.ne.m.sf, model=NULL)

[ordinary or weighted least squares prediction]

We then krige the residuals from the OLS trend of the known points; we
computed those in §4.3, and computed their variogram in §4.4.
k.okr <- krige(ols.resid ~ 1, locations=ne.m,

newdata=dem.ne.m.sf, model=vmf.r.ols)

[using ordinary kriging]

We then add these together to get a final prediction of the trend and the
local deviations from it, which is what KED does in one step:
k.ok$rk.pred <- k.ok$var1.pred + k.okr$var1.pred

Finally, compare this to the KED prediction, and compute their differences:
k.ok$diff.pred <- k.ok$rk.pred - k.ked$var1.pred
summary(k.ok$rk.pred); summary(k.ked$var1.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
901 1980 2349 2469 2825 3948
Min. 1st Qu. Median Mean 3rd Qu. Max.
915.5 1984.0 2350.7 2468.4 2823.3 3944.8

summary(k.ok$diff.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-18.381 -3.932 -1.066 0.142 1.695 16.812

We see a smaller magnitude difference here as when we compared KED to
RK/GLS in the previous §.

The geographic distribution of the differences is because of the different trend
surface:
dem.ne.m.df$diff.okrk.ked.pred <- k.ok$diff.pred
display.difference.map("diff.okrk.ked.pred",

"Naive RK vs.\ KED surface, GDD base 50F",
"+/- GDD50")

65

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
+/− GDD50

−10

0

10

Naive RK vs. KED surface, GDD base 50F

We also saw differences between GLS and OLS for the calibration points,
in §5.5 and for the prediction grid in §6; here the differences are smaller
because we also kriged the residuals from the two trend surfaces.

So this shows that KED as implemented by krige does use GLS, not OLS,
to compute the trend component. The difference with RK/GLS is that the
covariance structure is based on the OLS trend, not fit at the same time as
the trend surface coefficients.

9 Generalized Additive Models

Generalized Additive Models (GAM) are similar to multiple linear regres-
sion, except that each term in the linear sum of predictors need not be the
predictor variable itself, but can be an empirical smooth function of it. So
instead of the linear model of 𝑘 predictors:

𝑦𝑖 = 𝛽0 +
∑
𝑘

𝛽𝑘𝑥𝑘,𝑖 + 𝜀𝑖 (20)

we allow functions 𝑓𝑘 of these:

𝑦𝑖 = 𝛽0 +
∑
𝑘

𝑓𝑘 (𝑥𝑘,𝑖) + 𝜀𝑖 (21)

The advantage is that non-linear relations in nature can be fit, without
any need to try transformations or to fit piecewise regressions. If this is
a better model fit, it should result in better predictions. The model is
additive, so the marginal contribution of each predictor to the model fit
can be determined. The disadvantage is that it is just an empirical fit

66

and can not be extrapolated beyond the range of calibration. A further
disadvantage is that the choice of function is arbitrary; it is generally some
smooth function of the predictor, with the degree of smoothness determined
by cross-validation.

Note: The GAM should never be extrapolated (there is no data to sup-
port it), whereas a polynomial can, with caution, be extrapolated, on the
theory that the data used to fit the model extends outside the range. This
is of course very dangerous for higher-order polynomials, which are a main
competitor to GAM.

Hastie et al. [7, §9.1] give a thorough explanation of GAM; a simplified
explanation of the same material is given in James et al. [10, §7.7]. In a
geostatistical setting, we can choose the coördinates as the predictors (as in
a trend surface) but fit these with smooth functions, rather than polynomi-
als. We can also fit any other predictor this way, e.g., in this example, the
elevation.

The smooth functions can be chosen in many ways; the most common are
cubic splines with knots at each value of the predictor. But we first exam-
ine whether a smooth curve, rather than one line (as in linear regression)
better matches the dependence of the annual GDD50 on the three possible
predictors.

Task 57 : Display a scatterplot of the three predictors against the annual
GDD50, with an empirical smoother. •

We use the ggplot2 graphics package, introduced in §3, to produce the
scatterplot and show a smoother with standard error. A simple way to
visualize the trend is with a local polynomial regression, provided with the
loess function, and incorporated into the scatterplot with the geom_smooth
function.

Note: The loess function has an span argument, which controls the degree
of smoothing by setting the neighbourhood for the local fit as a proportion
of the number of points. The default span=0.75 thus uses the 3/4 of the
total points closest each point. These are then weighted so that closer points
have more weight; see ?loess for details. The default works well in most
situations, and here we only want a visual impression, not a “best fit” in a
statistical sense.

We use the gridExtra package, which includes a function grid.arrange to
arrange saved plots in a grid.

67

g1 <- ggplot(ne.df, aes(x=E, y=ANN_GDD50)) +
geom_point() +
geom_smooth(method="loess")

g2 <- ggplot(ne.df, aes(x=N, y=ANN_GDD50)) +
geom_point() +
geom_smooth(method="loess")

g3 <- ggplot(ne.df, aes(x=ELEVATION_, y=ANN_GDD50)) +
geom_point() +
geom_smooth(method="loess")

g4 <- ggplot(ne.df, aes(x=sqrt(ELEVATION_), y=ANN_GDD50)) +
geom_point() +
geom_smooth(method="loess")

require(gridExtra)
grid.arrange(g1, g2, g3, g4, ncol = 2)

`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'

1000

2000

3000

4000

−4e+05 −2e+05 0e+00 2e+05
E

A
N

N
_G

D
D

50

1000

2000

3000

4000

−4e+05 −2e+05 0e+00 2e+05
N

A
N

N
_G

D
D

50

1000

2000

3000

4000

0 1000 2000 3000 4000
ELEVATION_

A
N

N
_G

D
D

50

1000

2000

3000

4000

0 20 40 60
sqrt(ELEVATION_)

A
N

N
_G

D
D

50

Q23 : Do these marginal relations appear to be linear in the predictors?

68

Jump to A23 •

These marginal plots motivate us to try a GAM.

9.1 Fitting a Generalized Additive Model

GAM can be fit in R with the gam function of the mgcv “Mixed GAM Com-
putation Vehicle” package. This specifies the model with a formula, as with
lm, but terms can now be arbitrary functions of predictor variables, not just
the variables themselves or simple transformations that apply to the whole
range of the variable, e.g. sqrt or log. Smooth functions of one or more
variables are specified with the s function of the mgcv package.

Task 58 : Load the mgcv package into the workspace. •
require(mgcv)

Common practice in GAM for models using coördinates is to smooth them
together with a bivariate smoother, by default a thin plate regression spline;
see §11 below for details. Other covariates, here the elevation, are smoothed
with penalized regression splines. These control the degree of smoothness
by penalizing increasingly complex models, i.e., those with more curvature;
see the help text ?s “defining smooths in GAM formulae” for details. In
practice the default parameters work well.

Task 59 : Fit a GAM to the annual GDD50 at the observation stations, with
the predictors being a two-dimensional thin-plate spline of the coördinates
and a one-dimensional penalized regression spline of the elevation. •
m.g.xy <- gam(ANN_GDD50 ~ s(E, N) + s(ELEVATION_), data=ne.df)
summary(m.g.xy)

##
Family: gaussian
Link function: identity
##
Formula:
ANN_GDD50 ~ s(E, N) + s(ELEVATION_)
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2517.518 9.986 252.1 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(E,N) 23.529 27.300 37.8 <2e-16 ***
s(ELEVATION_) 8.521 8.922 51.6 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.908 Deviance explained = 91.7%
GCV = 34111 Scale est. = 30415 n = 305

summary(residuals(m.g.xy))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-374.469 -110.746 -3.646 0.000 95.597 481.658

69

Q24 : How well does this model fit the calibration observations? Jump to
A24 •

An important consideration is whether the residuals have any spatial struc-
ture; recall this is why we replaced OLS with GLS.

Task 60 : Plot the residuals as a bubble plot, and examine their spatial
structure with a variogram. •
ne.m$resid.m.g.xy <- residuals(m.g.xy)
bubble.sf("ne.m", "resid.m.g.xy", "GDD50", "Residuals from GAM")

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− GDD50

100

200

300

400

−, overprediction

+, underprediction

Residuals from GAM

vr <- variogram(resid.m.g.xy ~ 1, loc=ne.m, cutoff=50000, width=5000)
plot(vr, pl=T)

70

distance

se
m

iv
ar

ia
nc

e

10000

20000

30000

40000

10000 20000 30000 40000

3

16

40

60
128 138

142

192
222 239

Q25 : Does there appear to be any local spatial correlation of the residuals?
Does the empirical variogram support your conclusion? Jump to A25 •

The plot.gam function of the mgcv package displays the marginal smooth
fit. For the 2D surface (model term s(E,N), this is shown as a wireframe plot
if the optional scheme argument is set to 1. The select argument selects
which model term to display. We orient it to see lowest GDD towards viewer,
using the theta argument:
plot.gam(m.g.xy, rug=T, se=T, select=1,

scheme=1, theta=30+130, phi=30)

71

E

N

s(E
,N

,23.53)

Q26 : Does the GAM 2D trend differ from a linear trend surface? Jump
to A26 •

This surface can also be shown with the vis.gam function of the mgcv pack-
age, also showing ± 1 standard error of fit:
vis.gam(m.g.xy, plot.type="persp", color="terrain",

theta=160, zlab="Annual GDD50", se=1.96)

72

E

N

A
nnual G

D
D

50

red/green are +/− 1.96 s.e.

E

N

A
nnual G

D
D

50

red/green are +/− 1.96 s.e.

E

N

A
nnual G

D
D

50

red/green are +/− 1.96 s.e.

The marginal relation with elevation can be presented as a scatterplot, with
the confidence intervals and residuals from the fit:
plot.gam(m.g.xy, select=2, rug=T, se=T, residuals=T, pch=20,

shade=T, seWithMean=T, shade.col="lightblue")

73

0 1000 2000 3000 4000

−
15

00
−

10
00

−
50

0
0

50
0

10
00

ELEVATION_

s(
E

LE
V

AT
IO

N
_,

8.
52

)

Q27 : Does the fitted marginal relation with elevation appear to be linear?
Jump to A27 •

Notice the very large confidence interval at the high elevations – we have so
few points there that the smoother is quite uncertain in this range.

Task 61 : Compare the GAM model fits with the actual values. •
(rmse.gam <- sqrt(sum(residuals(m.g.xy)^2)/length(residuals(m.g.xy))))

[1] 164.6781

plot(ne.m$ANN_GDD50 ~ predict(m.g.xy, newdata=ne.df),
col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by random forest", ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.df$STATE), pch=20, col=1:4)
grid(); abline(0,1)

74

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by random forest

A
ct

ua
l

NJ
NY
PA
VT

The RMSE is 164.7; there are no observations that are particularly badly-fit.

9.2 GAM prediction over the study area

Since we now have a model which uses the covariables known across the
prediction grid, we can use the model to predict.

Task 62 : Predict the annual GDD50, and the standard error of prediction,
across the prediction grid, using the fitted GAM, and display the predictions.

•

The predict.gam function predicts from a fitted GAM. The se.fit op-
tional argument specifies that the standard error of prediction should also
be computed.
tmp <- predict.gam(object=m.g.xy, newdata=dem.ne.m.df, se.fit=TRUE)
summary(tmp$fit)

Min. 1st Qu. Median Mean 3rd Qu. Max.
563 2030 2417 2446 2841 3890

summary(tmp$se.fit)

Min. 1st Qu. Median Mean 3rd Qu. Max.
36.01 55.90 65.61 75.45 89.32 250.56

dem.ne.m.df$pred.gam <- tmp$fit
dem.ne.m.df$pred.gam.se <- tmp$se.fit
display.prediction.map("pred.gam", "Annual GDD, base 50F, GAM prediction",

"GDD50")

75

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50

1000

2000

3000

4000

Annual GDD, base 50F, GAM prediction

This map shows more detail than the OLS and GLS maps, especially in the
high elevations and along the Atlantic coast.

Task 63 : Display the map of the standard errors of prediction. •
ggplot() +

geom_point(aes(x=E, y=N, colour=pred.gam.se), data=dem.ne.m.df) +
xlab("E") + ylab("N") + coord_fixed() +
ggtitle("Annual GDD base 50F, Standard error of GAM prediction") +
scale_colour_distiller(name="GDD50 s.e.", space="Lab", palette="RdYlGn",

direction=-1)

76

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50 s.e.

50

100

150

200

250

Annual GDD base 50F, Standard error of GAM prediction

Consistent with the marginal plots, we see that the standard error is much
higher at the highest elevations, where there are few observations to support
the GAM.

An obvious question is where this map differs from the GLS and GLS-RK
maps.

Task 64 : Compute the differences in GLS and GAM model predictions
over the grid, summarize numerically, and display as a difference map. •
summary(dem.ne.m.df$diff.gls.gam <-

dem.ne.m.df$pred.gls - dem.ne.m.df$pred.gam)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-721.75 -136.10 -3.71 20.65 147.47 942.64

There are some large differences. See where these are located:
display.difference.map("diff.gls.gam",

"Difference annual GDD base 50F, GLS - GAM",
"+/- GDD50")

77

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
+/− GDD50

−500

0

500

Difference annual GDD base 50F, GLS − GAM

Q28 : Where are the largest differences between the GAM and GLS pre-
dictions? Jump to A28
•

The RK component of GLS-RK allowed for local adjustment to the overall
trend surface, based on local spatial dependence. GAM also adjusts locally,
via its smoothers. How close are these predictions?

Task 65 : Compute the differences in GLS-RK and GAM model predictions
over the grid, summarize numerically, and display as a difference map. •
dem.ne.m.df$diff.rkgls.gam <- dem.ne.m.df$pred.rkgls - dem.ne.m.df$pred.gam
summary(dem.ne.m.df$diff.rkgls.gam)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-721.753 -104.737 -5.354 20.046 117.922 942.634

There are some large differences. See where these are located:
ggplot() +

geom_point(aes(x=E, y=N, colour=diff.rkgls.gam), data=dem.ne.m.df) +
xlab("E") + ylab("N") + coord_fixed() +
ggtitle("Difference annual GDD base 50F, GLS/RK - GAM") +
scale_colour_distiller(name="GDD50", space="Lab", palette="Spectral")

78

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50

−500

0

500

Difference annual GDD base 50F, GLS/RK − GAM

Q29 : Where are the largest differences between the GAM and GLS-RK
predictions? Jump to A29 •

10 Data-driven models

A data-driven model is an alternative to linear modelling. It makes no as-
sumptions about linearity; rather, it uses a set of regression trees. These
partition the feature space of predictors into a set of rectangles in the di-
mensions of the feature space, i.e., defined by limits of each predictor in
feature space. These rectangles each then have a simple prediction model,
in the simplest case just a constant, which is a single predicted value of the
response variable for all combinations of predictor variables in that feature-
space rectangle. The advantages of this approach are:

1. no assumption that the functional form is the same throughout the
range of the predictors;

2. over-fitting can be avoided by specifying large enough rectangles; their
optimum size can be calculated by cost-complexity pruning.

This is a high-variance, low-bias method. This means that different fits of the
model with different subsets of the data may result in quite different fitted
models (high variance), but the predictions not be systematically different
from the expected values (low bias).

A disadvantage of this approach is that, unlike linear models. it can not not
extrapolate outside of its range of calibration, i.e., the multivariate feature-

79

space limits of its predictors. But that might equally be considered an
advantage18, because it avoids any assumptions about the relation between
target and predictors outside the calibration space.

Note: Hastie et al. [7, §9.2] give a thorough explanation of a tree-based
regression method known as CART (“Classification and Regression Trees”)
[2]; these are implemented in R by the rpart “Recursive Partitioning” pack-
age. A simplified explanation of the same material is given in James et al.
[10, §8.1].

10.1 Regression trees

We first start with the simplest data-driven approach: the regression tree.
This replaces a regression equation, as developed in the previous section,
with a decision tree based only only optimal splitting of the response variable
by the predictors.

10.1.1 Fitting a regression tree model

The procedure is as follows:

1. We first specify the response variable and the possible predictors.

2. We specify a calibration (“training”) dataset, as for the linear model.

3. The algorithm then looks for one predictor variable that “best” splits
the data into two groups, and the value of that predictor on which to
split. Intuitively, “best” refers to the maximum reduction in sum of
within-group sums of squares in the response variable, compared to
its overall sum of squares with no split; this is the same measure as
used in Analysis of Variance (ANOVA); symbolically the reduction is
SST− (SSL+SSR), where L,R represent the “left” and “right” branches
of the tree.

4. Following the split, this process is applied separately to both sub-
groups; this continues recursively until the subgroups either reach a
minimum size (specified by us) or until no improvement can be made;
that is the sum of the within-groups sum of squares can not be further
reduced.

5. This model is then pruned, i.e., some branches are combined, by cross-
validation, to avoid over-fitting.

Regression trees are implemented in the rpart function of the rpart pack-
age.

Task 66 : Load the rpart package. •
require(rpart)

Task 67 : Compute a regression tree for the response GDD50, from the
18 “Elk naadeel heeft zijn voordeel” – Johann Cruijff

80

predictors N, E, and ELEVATION_. Note that there is no need to transform
any predictor. •

The rpart function has several control options: (1) the minimum number
of observations which can be considered for a split (using the minsplit
argument); and (2) the minimum value of a complexity parameter (using
the cp argument). This corresponds to the improvement in R2 with each
split. A small complexity parameter (close to 0) grows a larger tree, which
may be over-fitting.

We set these to allow maximum splitting: split even if only two cases, using
the minsplit optional argument. Also specify a small complexity parameter
with the cp optional argument: keep splitting until there is less than 0.3%
improvement in (unadjusted) R2.

The model formulation is the same as for linear modelling: specify the pre-
dictand (dependent variable) on the left side of the ~ formula operator and
the predictors on the right side, separated by the + formula operator. Note
there is no interaction possible in tree models; the predictors are considered
separately when determining which to use for a split.
m.rt <- rpart(ANN_GDD50 ~ N + E + ELEVATION_,

data=ne.df,
minsplit=2,
cp=0.003)

Task 68 : Display the fitted tree in text form. •
print(m.rt)

n= 305
##
node), split, n, deviance, yval
* denotes terminal node
##
1) root 305 100137700.0 2517.518
2) N>=-155967.2 183 27412290.0 2182.536
4) ELEVATION_>=1275 45 3699167.0 1778.200
8) N>=119836.3 12 921737.0 1493.500
16) ELEVATION_>=2945 1 0.0 795.000 *
17) ELEVATION_< 2945 11 389480.0 1557.000
34) ELEVATION_>=1355 10 68720.0 1503.000 *
35) ELEVATION_< 1355 1 0.0 2097.000 *
9) N< 119836.3 33 1451091.0 1881.727
18) E>=-237967.7 31 1059064.0 1854.065
36) ELEVATION_>=1721 11 354595.6 1715.818 *
37) ELEVATION_< 1721 20 378607.8 1930.100 *
19) E< -237967.7 2 612.5 2310.500 *
5) ELEVATION_< 1275 138 13957200.0 2314.384
10) N>=82678.87 40 2854040.0 2076.125
20) ELEVATION_>=520 19 568665.7 1878.263 *
21) ELEVATION_< 520 21 868542.6 2255.143
42) N>=142190.2 16 195405.8 2173.375 *
43) N< 142190.2 5 223838.8 2516.800 *
11) N< 82678.87 98 7905649.0 2411.633
22) ELEVATION_>=946 34 1936208.0 2197.941
44) N>=-36918.74 16 529437.0 2028.250 *
45) N< -36918.74 18 536519.1 2348.778 *
23) ELEVATION_< 946 64 3592056.0 2525.156
46) N>=-104679.8 46 1681030.0 2451.326
92) ELEVATION_>=115 44 1336795.0 2433.023
184) E>=-156122.8 34 803000.0 2383.382 *

81

185) E< -156122.8 10 165155.6 2601.800 *
93) ELEVATION_< 115 2 5202.0 2854.000 *
47) N< -104679.8 18 1019503.0 2713.833
94) E< 122469.2 11 451684.0 2587.000 *
95) E>=122469.2 7 112794.9 2913.143 *
3) N< -155967.2 122 21387870.0 3019.992
6) ELEVATION_>=395 56 6252615.0 2709.107
12) ELEVATION_>=1505 10 202742.9 2189.100 *
13) ELEVATION_< 1505 46 2757956.0 2822.152
26) N>=-231009.3 25 1153309.0 2706.320 *
27) N< -231009.3 21 869901.0 2960.048 *
7) ELEVATION_< 395 66 5130590.0 3283.773
14) N>=-252628.4 38 2433245.0 3148.526
28) ELEVATION_>=25 32 1337325.0 3088.969
56) ELEVATION_>=220 11 161948.7 2936.545 *
57) ELEVATION_< 220 21 785949.2 3168.810 *
29) ELEVATION_< 25 6 377040.8 3466.167 *
15) N< -252628.4 28 1058940.0 3467.321
30) ELEVATION_>=52.5 20 420733.0 3394.950 *
31) ELEVATION_< 52.5 8 271573.5 3648.250 *

Task 69 : Plot the regression tree. •

The tree is graphed with the rpart.plot function of the rpart.plot pack-
age.

The rpart.plot function has several options to control the display; we
choose to show the values of the response variable at the interior nodes as
well as at the leaves, and to show the number of observations in each split
and leaf. The information is the same as given with a printout of the model
object, but easier to visualize.

82

require(rpart.plot)
rpart.plot(m.rt, digits=3, type=4, extra=1)

N >= −156e+3

ELEVATION_ >= 1275

N >= 120e+3

ELEVATION_ >= 2945

ELEVATION_ >= 1355

E >= −238e+3

ELEVATION_ >= 1721

N >= 82.7e+3

ELEVATION_ >= 520

N >= 142e+3

ELEVATION_ >= 946

N >= −36.9e+3 N >= −105e+3

ELEVATION_ >= 115

E >= −156e+3

E < 122e+3

ELEVATION_ >= 395

ELEVATION_ >= 1505

N >= −231e+3

N >= −253e+3

ELEVATION_ >= 25

ELEVATION_ >= 220

ELEVATION_ >= 53

 < −156e+3

 < 1275

 < 120e+3

 < 2945

 < 1355

 < −238e+3

 < 1721

 < 82.7e+3

 < 520

 < 142e+3

 < 946

 < −36.9e+3 < −105e+3

 < 115

 < −156e+3

 >= 122e+3

 < 395

 < 1505

 < −231e+3

 < −253e+3

 < 25

 < 220

 < 53

2518
n=305

2183
n=183

1778
n=45

1494
n=12

795
n=1

1557
n=11

1503
n=10

2097
n=1

1882
n=33

1854
n=31

1716
n=11

1930
n=20

2310
n=2

2314
n=138

2076
n=40

1878
n=19

2255
n=21

2173
n=16

2517
n=5

2412
n=98

2198
n=34

2028
n=16

2349
n=18

2525
n=64

2451
n=46

2433
n=44

2383
n=34

2602
n=10

2854
n=2

2714
n=18

2587
n=11

2913
n=7

3020
n=122

2709
n=56

2189
n=10

2822
n=46

2706
n=25

2960
n=21

3284
n=66

3149
n=38

3089
n=32

2937
n=11

3169
n=21

3466
n=6

3467
n=28

3395
n=20

3648
n=8

Q30 : What is the first (root) splitting variable? At what value is the
split? What is the mean value of GDD50 of the whole dataset, and of the
two branches? How many observations in each branch? Jump to A30 •

Although there is no model with coefficients, we can still see which predictor
variables had the most influence on the tree.

Task 70 : Display the variable importance as a proportion. •

83

This is the proportion of the variance explained by the tree which is due to
each variable.
x <- m.rt$variable.importance
data.frame(variableImportance = 100 * x / sum(x))

variableImportance
N 48.90337
ELEVATION_ 38.60227
E 12.49436

Q31 : Which variables are most important? Jump to A31 •

We now examine the reduction in fitting and cross-validation error with the
printcp “print the complexity parameter” function.

Task 71 : Print and plot the error rate vs. the complexity parameter and
tree size. •
printcp(m.rt)

##
Regression tree:
rpart(formula = ANN_GDD50 ~ N + E + ELEVATION_, data = ne.df,
minsplit = 2, cp = 0.003)
##
Variables actually used in tree construction:
[1] E ELEVATION_ N
##
Root node error: 100137734/305 = 328320
##
n= 305
##
CP nsplit rel error xerror xstd
1 0.5126697 0 1.000000 1.00622 0.070339
2 0.0999090 1 0.487330 0.51823 0.041222
3 0.0974250 2 0.387421 0.46287 0.039271
4 0.0328739 3 0.289996 0.31868 0.025099
5 0.0319311 4 0.257122 0.29848 0.023483
6 0.0237411 5 0.225191 0.28081 0.023420
7 0.0163615 6 0.201450 0.25288 0.020905
8 0.0141488 7 0.185089 0.25099 0.021131
9 0.0132452 8 0.170940 0.24478 0.020829
10 0.0089030 9 0.157695 0.24123 0.021066
11 0.0086905 10 0.148792 0.23276 0.019475
12 0.0073373 11 0.140101 0.23617 0.019555
13 0.0071789 12 0.132764 0.22297 0.018837
14 0.0053152 13 0.125585 0.21269 0.016959
15 0.0045440 14 0.120270 0.20473 0.016469
16 0.0044868 15 0.115726 0.20596 0.016475
17 0.0039088 16 0.111239 0.20617 0.016620
18 0.0038889 17 0.107330 0.20208 0.016268
19 0.0036613 18 0.103441 0.20385 0.016333
20 0.0035335 19 0.099780 0.20161 0.015913
21 0.0032541 21 0.092713 0.20369 0.016004
22 0.0032032 22 0.089459 0.19978 0.015816
23 0.0030000 23 0.086256 0.19658 0.015869

plotcp(m.rt)

84

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.057 0.02 0.011 0.0062 0.0039 0.0032

1 3 5 7 9 11 13 15 17 19 22 24

size of tree

Note: Your results will likely be different. This is because the cross-validation
makes a random split of the full dataset into a number of subsets for model
building and evaluation. Each run gives a different random split.

The xerror field in the summary shows the cross-validation error; that is,
applying the model to the original data split 𝐾-fold, each time excluding
some observations. If the model is over-fitted, the cross-validation error
increases; note that the fitting error, given in the error field, always de-
creases. By default, the split is 10-fold; this can be modified by the control
argument to the rpart function.19

Q32 : Does this model appear to be overfit? Why or why not? What ap-
pears to be the optimum complexity parameter to avoid over-fitting? Jump
to A32 •

Task 72 : Prune the tree back to complexity level estimated from the
previous answer. •

We do this with the prune function, specifying the cp “complexity parame-
19 See the help for rpart.control.

85

ter” argument.
(m.rt.p <- prune(m.rt, cp=0.0045))

n= 305
##
node), split, n, deviance, yval
* denotes terminal node
##
1) root 305 100137700.0 2517.518
2) N>=-155967.2 183 27412290.0 2182.536
4) ELEVATION_>=1275 45 3699167.0 1778.200
8) N>=119836.3 12 921737.0 1493.500
16) ELEVATION_>=2945 1 0.0 795.000 *
17) ELEVATION_< 2945 11 389480.0 1557.000 *
9) N< 119836.3 33 1451091.0 1881.727 *
5) ELEVATION_< 1275 138 13957200.0 2314.384
10) N>=82678.87 40 2854040.0 2076.125
20) ELEVATION_>=520 19 568665.7 1878.263 *
21) ELEVATION_< 520 21 868542.6 2255.143 *
11) N< 82678.87 98 7905649.0 2411.633
22) ELEVATION_>=946 34 1936208.0 2197.941
44) N>=-36918.74 16 529437.0 2028.250 *
45) N< -36918.74 18 536519.1 2348.778 *
23) ELEVATION_< 946 64 3592056.0 2525.156
46) N>=-104679.8 46 1681030.0 2451.326 *
47) N< -104679.8 18 1019503.0 2713.833
94) E< 122469.2 11 451684.0 2587.000 *
95) E>=122469.2 7 112794.9 2913.143 *
3) N< -155967.2 122 21387870.0 3019.992
6) ELEVATION_>=395 56 6252615.0 2709.107
12) ELEVATION_>=1505 10 202742.9 2189.100 *
13) ELEVATION_< 1505 46 2757956.0 2822.152
26) N>=-231009.3 25 1153309.0 2706.320 *
27) N< -231009.3 21 869901.0 2960.048 *
7) ELEVATION_< 395 66 5130590.0 3283.773
14) N>=-252628.4 38 2433245.0 3148.526
28) ELEVATION_>=25 32 1337325.0 3088.969 *
29) ELEVATION_< 25 6 377040.8 3466.167 *
15) N< -252628.4 28 1058940.0 3467.321 *

Task 73 : Plot the pruned regression tree. •

86

rpart.plot(m.rt.p, digits=3, type=4, extra=1)

N >= −156e+3

ELEVATION_ >= 1275

N >= 120e+3

ELEVATION_ >= 2945

N >= 82.7e+3

ELEVATION_ >= 520 ELEVATION_ >= 946

N >= −36.9e+3 N >= −105e+3

E < 122e+3

ELEVATION_ >= 395

ELEVATION_ >= 1505

N >= −231e+3

N >= −253e+3

ELEVATION_ >= 25

 < −156e+3

 < 1275

 < 120e+3

 < 2945

 < 82.7e+3

 < 520 < 946

 < −36.9e+3 < −105e+3

 >= 122e+3

 < 395

 < 1505

 < −231e+3

 < −253e+3

 < 25

2518
n=305

2183
n=183

1778
n=45

1494
n=12

795
n=1

1557
n=11

1882
n=33

2314
n=138

2076
n=40

1878
n=19

2255
n=21

2412
n=98

2198
n=34

2028
n=16

2349
n=18

2525
n=64

2451
n=46

2714
n=18

2587
n=11

2913
n=7

3020
n=122

2709
n=56

2189
n=10

2822
n=46

2706
n=25

2960
n=21

3284
n=66

3149
n=38

3089
n=32

3466
n=6

3467
n=28

Q33 : How does this tree differ from the original regression tree? Jump
to A33 •

We can compare the fitted vs. actual values.

Task 74 : Use the pruned regression tree to predict at the calibration points.
•

We do this with the predict method applied to a rpart object; this au-
tomatically calls function predict.rpart. The points to predict and the

87

values of the predictor variables at those points are supplied in a dataframe
as argument newdata. We count the number of predicted values with the
unique function; there is only one value per “box” in the feature space
defined by the predictor variables.
summary(p.rt.p <- predict(m.rt.p, newdata=ne.df))

Min. 1st Qu. Median Mean 3rd Qu. Max.
795 2028 2451 2518 2960 3467

Task 75 : Count the unique predicted values. •
length(unique(p.rt.p))

[1] 16

Task 76 : Compute the residuals: (actual - predicted) and the RMSE.
Summarize them and present as a histogram. •
summary(residuals.rt.p <- ne.df$ANN_GDD50 - p.rt.p)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-546.73 -122.73 -10.14 0.00 127.90 553.68

hist(residuals.rt.p, main="Residuals from regression tree fit",
xlab="ANN_GDD50")

rug(residuals.rt.p)
sqrt(mean(residuals.rt.p^2)/length(residuals.rt.p))

[1] 11.16128

Residuals from regression tree fit

ANN_GDD50

F
re

qu
en

cy

−600 −400 −200 0 200 400 600

0
10

20
30

40
50

60

Task 77 : Plot the actual vs. fitted values. •
plot(ne.df$ANN_GDD50 ~ p.rt.p, asp=1, pch=20,

xlab="fitted by regression tree", ylab="actual",

88

xlim=c(500,4200), ylim=c(500,4200),
col=ne.df$STATE,
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid()
abline(0,1)

1000 2000 3000 4000

10
00

20
00

30
00

40
00

Annual GDD50

fitted by regression tree

ac
tu

al
NJ
NY
PA
VT

Q34 : How many unique values are predicted by the pruned regression
tree? How close is the fit to the actual values, compared to the OLS or GLS
models? Explain. Jump to A34 •

10.1.2 Regression tree prediction over the study area

Task 78 : Predict over the grid with the regression tree model, add the
results to the dataframe, and summarize them. •

Task 79 : Display the regression tree surface. •
dem.ne.m.df$pred.rt <- predict(m.rt.p, newdata=dem.ne.m.df)
summary(dem.ne.m.df$pred.rt)

Min. 1st Qu. Median Mean 3rd Qu. Max.
795 1882 2255 2432 2960 3467

We also add the point set in the same colour scheme; if the point is visible
it means the residual (lack of fit) is large.
display.prediction.map("pred.rt",

"Annual GDD, base 50F, regression tree prediction",
"GDD50")

89

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD, base 50F, regression tree prediction

Q35 : What is the spatial pattern of the regression tree prediction? Explain
why. Jump to A35 •

10.2 Random forests

There are several problems with regression trees:

1. A small change in the sample set, for example a missing or erroneous
observation, can radically change the tree.

2. Pruning the tree to avoid overfitting is also somewhat subjective.

3. Correlated predictors can appear in the tree as surrogates for each
other, depending on the details of the calibration set; this makes in-
terpretation difficult.

4. Trees do not give smooth predictions; rather they only predict a sin-
gle value in each “box”. Although this is statistically justified by the
model, it is certainly disconcering to the map user.

To solve these problems, a method known as “random forests” was devel-
oped; see Hastie et al. [7, §15] (advanced) or James et al. [10, §8] (simplified).
There are a lot of details to this method, but the basic idea is straightfor-
ward:

1. Build a large number of regression trees, independently, using differ-
ent sets of observations; these are built by sampling with replacement
from the actual observations; this is a technique known as bagging or
bootstrap aggregation.

90

2. Save all these trees; when predicting, use all of them and average their
predictions.

3. In addition we can summarize the whole set of trees to see how different
they are, thus how robust is the final model.

4. Also, for each tree we can use observations that were not used to
construct it for true validation, called out-of-bag validation. This gives
a good idea of the true prediction error.

The first step may seem suspicious. The underlying idea is that what we
observe is the best sample we have of reality; if we sampled again we’d expect
to get similar values. So we simulate re-sampling by sampling from this same
set, with replacement, to get a sample of the same size but a different sample.
If this idea bothers you, read Efron and Gong [4], Shalizi [22] or Hastie et al.
[7, §8.2].

So, how well does the random forest method work for a spatially-distributed
variable?

We know that by definition a linear model, whether OLS or GLS fit, will vary
smoothly with the predictors. That is, if these predictors vary smoothly in
space the map of the linear model predictions will also look smooth. In this
example the predictor Northing is by definition smooth, and the predictor
elevation often changes smoothly, so we can expect a smooth prediction map.
However, random forests are not linear. They are based on an ensemble of
regression trees, with no requirement for smooth cut points.

Another attractive feature of random forests is that there is no need for pre-
dictor variable selection to avoid colinearity. Since the predictors to compare
are randomly chosen at each split, it is possible for “minor” predictors which
would not be included in a parametric approach to contribute to some of
the trees, and thus to the ensemble prediction. In this example Easting was
not used in the regression models, but should be used here. The relative
importance of the predictors is reported by the RF function.

10.2.1 Fitting a Random Forest model

Task 80 : Fit a random forest model of GDD50 based on all three possible
covariates: elevation, Northing and Easting. •

There are several R packages that implement random forests. A very fast
implementation, widely used, is provided by the ranger package [29].
require(ranger)

The ranger function of the ranger package fits this model. This model
requires two parameters:

1. the number of trees in the forest, optional argument num.trees, de-
fault value 500;

91

2. the number of predictors to compare at each split, optional argument
mtry, default value is 1/3 of the predictors.

Here we accept the default for the number of predictors, which in this case
will be one of the three predictors, but require more than the default number
of trees

We also specify the optional importance argument as "permutation" to see
two measures of predictor importance, as explained below.

Since this does not assume linearity we can use the untransformed station
elevation.
m.rf <- ranger(ANN_GDD50 ~ ELEVATION_ + N + E,

data=ne.df, num.trees=1200,
importance="permutation")

proportional importance
ranger::importance(m.rf)/sum(ranger::importance(m.rf))*100

ELEVATION_ N E
45.41475 43.63581 10.94944

ranger::importance(m.rf)/dim(ne.df)[1]

ELEVATION_ N E
724.1184 695.7541 174.5840

The “permutation” measure of predictor importance is the sum of differences
of predictions errors in the out-of-bag (OOB) validations if the predictor is
removed from the set. Here we divide by their sum to get the relative
importance.

Q36 : Which predictor is most important? Jump to A36 •

Task 81 : Plot the actual vs. fitted values from the random forest model.
Compute the mean error (bias, ME) and the root mean squared error (RMSE).

•

The predict function gives predicted values based on a model. To pre-
dict back at the calibration points, the newdata argument to the predict
function must specify this point set.

Note: Each run of the random forest will produce different fits, so your
graph may not look exactly like this one.

summary(rf.fits <- predict(m.rf, data = ne.df)$predictions)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1214 2121 2457 2518 2896 3786

plot(ne.m$ANN_GDD50 ~ rf.fits,
col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by random forest",
ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid()
abline(0,1)

92

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by random forest

A
ct

ua
l

NJ
NY
PA
VT

summary(rf.resid <- ne.m$ANN_GDD50 - rf.fits)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-418.9161 -64.2898 -7.4186 -0.8869 50.9118 292.6357

(rf.me <- mean(rf.resid))

[1] -0.8869138

(rf.rmse <- sqrt(mean(rf.resid^2)/length(rf.resid)))

[1] 5.67573

The fits are very close. However, this is not a good measure of the prediction
accuracy. For that we use out-of-bag (OOB) cross-validation.

OOB predictions are automatically computed with the ranger function, at
the same time it builds the forest. Each point is predicted as the average
of the RF predictions for those regression trees where that point was not
included in the “bag”.

Task 82 : Plot the actual vs. out-of-bag validation values from the random
forest model. Compute the mean error (bias, ME) and the root mean squared
error (RMSE). •
summary(rf.oob <- m.rf$predictions)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1550 2140 2456 2520 2862 3706

plot(ne.m$ANN_GDD50 ~ rf.oob,
col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by random forest (OOB)",
ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid()
abline(0,1)

93

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by random forest (OOB)

A
ct

ua
l

NJ
NY
PA
VT

summary(rf.oob.resid <- ne.m$ANN_GDD50 - rf.oob)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-857.065 -125.679 -18.347 -2.488 115.325 649.654

(rf.oob.me <- mean(rf.oob.resid))

[1] -2.488285

(rf.oob.rmse <- sqrt(mean(rf.oob.resid^2)/length(rf.oob.resid)))

[1] 11.59619

This is a realistic view of the prediction accuracy. It is much more scattered
around the 1:1 line than the calibration fit. Note in particular the high
negative residual for Mt. Mansfield (VT); this is the blue point at the bottom
of the plot.

Task 83 : Compare the ME and RMSE for the model fits and out-of-bag
residuals. •
(rf.oob.me/rf.me)

[1] 2.805555

(rf.oob.rmse/rf.rmse)

[1] 2.043119

Q37 : How does the OOB RMSE compare to the RMSE from the model fits
at the training points? Which is more realistic as a measure of prediction
accuracy? Jump to A37 •

94

Task 84 : Extract the RF model residuals, summarize them, and show them
as a bubble plot. •

The model residuals are computed from the fits at each point and the actual
values; for this we use the fits, not the out-of-bag estimates.
ne.m$rf.resid <- (ne.df$ANN_GDD50 - rf.fits)
summary(ne.m$rf.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-418.9161 -64.2898 -7.4186 -0.8869 50.9118 292.6357

bubble.sf("ne.m", "rf.resid", "GDD50",
"Random Forest fitted residuals, actual-predicted")

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− GDD50

100

200

300

400

−, overprediction

+, underprediction

Random Forest fitted residuals, actual−predicted

The residuals are fairly similar in range to the linear model. There are some
very poorly-fit points. Notice that the mean residual is not zero, as in the
least-squares fit of the linear model.

Task 85 : Compute the RF out-of-bag residuals and compare them to the
RF model residuals. •
ne.m$rf.resid.oob <- (ne.df$ANN_GDD50 - rf.oob)
summary(ne.m$rf.resid.oob)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-857.065 -125.679 -18.347 -2.488 115.325 649.654

bubble.sf("ne.m", "rf.resid.oob", "GDD50",
"Random Forest OOB residuals, actual-predicted")

95

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− GDD50

200

400

600

800

−, overprediction

+, underprediction

Random Forest OOB residuals, actual−predicted

Compare the fitted and OOB residuals:
summary(ne.m$rf.resid.oob/ne.m$rf.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-121.909 1.835 2.008 1.441 2.195 12.600

As seen in the 1:1 plots and in the bubble plot legenfs, the out-of-bag resid-
uals are much larger: The mean ratio of the two is 1.44.

Task 86 : List the eight worst-fit points, sorted by their absolute residuals,
along with the residual from the GLS fit linear model. •
(ix <- order(abs(ne.m$rf.resid.oob), decreasing=TRUE)[1:8])

[1] 293 118 220 232 115 226 146 278

ne.m[ix,c("STATE","STATION_NA","ELEVATION_",
"gls.resid", "rf.resid")]

Simple feature collection with 8 features and 5 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -247918.1 ymin: -297715.7 xmax: 252835.5 ymax: 230248.4
Projected CRS: +proj=aea +lat_0=42.5 +lat_1=39
+lat_2=44 +lon_0=-76 +ellps=WGS84 +units=m
STATE STATION_NA ELEVATION_ gls.resid rf.resid
4716 VT MOUNT MANSFIELD 3950 -13.33249 -418.9161
3092 NY MOHONK LAKE 1245 439.87959 292.6357
3830 PA JOHNSTOWN 1214 653.74848 274.8954
3842 PA MARCUS HOOK 10 411.03014 240.0095
3089 NY MIDDLETOWN 2 NW 700 413.05043 225.0110
3836 PA LAURELTON CENTER 800 392.09110 200.7551
3120 NY SLIDE MOUNTAIN 2650 -354.36183 -195.9762
3888 PA WILKES BRE SCTN AP AVOCA 930 288.51349 199.7027
geometry
4716 POINT (252835.5 230248.4)
3092 POINT (153668.2 -79515.15)
3830 POINT (-247918.1 -237035.8)

96

3842 POINT (49632.7 -297715.7)
3089 POINT (129349.2 -113350.6)
3836 POINT (-102705.5 -177146.3)
3120 POINT (130736.3 -52170.55)
3888 POINT (22581.52 -130037)

names(ne.m)

[1] "STATION_ID" "STATE" "STATION_NA"
[4] "LATITUDE_D" "LONGITUDE_" "ELEVATION_"
[7] "OID_" "COOP_ID" "STATE_1"
[10] "STN_NAME" "LAT_DD" "LONG_DD"
[13] "ELEV_FT" "JAN_GDD50" "FEB_GDD50"
[16] "MAR_GDD50" "APR_GDD50" "MAY_GDD50"
[19] "JUN_GDD50" "JUL_GDD50" "AUG_GDD50"
[22] "SEP_GDD50" "OCT_GDD50" "NOV_GDD50"
[25] "DEC_GDD50" "ANN_GDD50" "geometry"
[28] "dist.lakes" "dist.coast" "mrvbf"
[31] "tri3" "pop15" "pop2pt5"
[34] "ols.resid" "gls.resid" "diff.gls.ols.resid"
[37] "N" "resid.m.g.xy" "rf.resid"
[40] "rf.resid.oob"

The RF almost always comes closer than the GLS regression to these worse-
fit points, because it is only using fairly similar points, in terms of the
predictors (N, E, elevation) to predict, and does not try to fit a regional
trend, which must consider all the calibration points.

However, the lowest actual GDD value (Mt. Mansfield in VT) is badly under-
predicted by the random forest model. This is because it is so unlike any
other point, since its elevstion is so much higher than the others. In the
linear model this has strong leverage (highest elevation by far, well to the
North) and is thus closely fit. The other poorly-predicted stations are also
“unusual” in their covariate-space neighbourhood.

Task 87 : Compute and display an empirical variogram of the RF model
residuals. •
v.rf <- variogram(rf.resid ~ 1, locations=ne.m, cutoff=100000, width=16000)
plot(v.rf, pl=T)

distance

se
m

iv
ar

ia
nc

e

2000

4000

6000

8000

10000

20000 40000 60000 80000

70

369 643

794 945
1061

269

97

Q38 : Do the residuals have spatial structure? This depends again on each
run of the model; your results will look different from the ones presented
here. Jump to A38 •

Task 88 : Compare the statistics of the regression model residuals. •
summary(ne.m$ols.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-532.764 -153.151 -7.838 0.000 155.435 641.758

summary(ne.m$rf.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-418.9161 -64.2898 -7.4186 -0.8869 50.9118 292.6357

summary(ne.m$gls.resid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-514.041 -149.624 -3.980 8.496 160.856 653.749

sd(ne.m$ols.resid)

[1] 210.8974

sd(ne.m$rf.resid)

[1] 99.28129

sd(ne.m$gls.resid)

[1] 211.0888

The statistics are similar; there is no clear “winner” Note that the GLS and
RF models are not unbiased – the mean residual is not zero.

10.2.2 Random Forest prediction over the study area

We can use the RF model to predict over the study area, as we did in §6 for
the OLS and GLS models.

Task 89 : Predict over the grid with the RF model, add the results to the
dataframe, and summarize them. •
dem.ne.m.df$pred.rf <- predict(m.rf, data=dem.ne.m.df)$prediction
summary(dem.ne.m.df$pred.rf)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1359 2069 2382 2458 2827 3770

Task 90 : Display the RF surface. •

We also add the point set in the same colour scheme; if the point is visible
it means the residual (lack of fit) is large.
display.prediction.map("pred.rf",

"Annual GDD, base 50F, random forest prediction",
"GDD50")

98

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50

1000

2000

3000

4000

Annual GDD, base 50F, random forest prediction

Q39 : What is the difference in the spatial pattern between the RF surface
and the RK-GLS surface? Jump to A39 •

Q40 : Why is there only one predicted value in most of Lake Erie, another
in the north-most part of Lake Erie, Lake Ontario, and the adjacent areas
of Ontario (Canada)? Jump to A40 •

Task 91 : Compute the differences between the GLS and RF predictions,
add them to the data frame, and display them. •
summary(dem.ne.m.df$diff.gls.rf <-

dem.ne.m.df$pred.gls - dem.ne.m.df$pred.rf)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-617.782 -121.130 -7.530 8.498 115.189 709.333

display.difference.map("diff.gls.rf",
"Annual GDD, base 50F, GLS - RF predictions",
"+/- GDD50")

99

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
+/− GDD50

−600

−300

0

300

600

Annual GDD, base 50F, GLS − RF predictions

Q41 : Why are the largest discrepancies in the east, especially in Connecti-
cut and Massachusetts, and in the northwest (Ontario)? Jump to A41
•

Q42 : Why is the border of PA with OH on the west visible in this difference
map? Jump to A42 •

Q43 : Why are there positive differences (GLS-RK greater than RF) in the
PA mountains and in the Catskills and Taconics in NY? Why does this not
occur in the Adirondacks? Jump to A43 •

Q44 : What do you conclude about the geographical area of applicability
of the random forest prediction? Jump to A44 •

10.3 Tuning data-driven models

Data-driven models have parameters that control their behaviour and can
significantly affect their predictive power.

For example, regression trees (§10.1) can be adjusted by the minimum num-
ber of observations which can be considered for a split (using the minsplit
argument) and the minimum value of a complexity parameter (using the cp
argument).

100

Random forests (§10.2) can also be controlled by the minimum number of
observations in a terminal node (optional argument nodesize), as well as
the number of predictors to compare at each split (optional argument mtry).
In the randomForest function these have default values of 5 and 1/3 of the
number of predictors, respectively. These can have a large influence on the
resulting forest. Too small terminal nodes will result in over-fit trees, too
large in poorer fits. Too many predictors tested at each split will not allow
less powerful predictors into the forest; too few will result in many poorly-
fitted trees.

Note: The number of trees ntree also has an influence on the random forest
model. Too few trees will cause repeated model fits to be too variable, too
many wastes computing time. This parameter is not optimized as such, a
large value is used and the graph of out-of-bag RMSE vs. number of trees is
examined to select an appropriate value.

So how to decide on these parameter values? A powerful method is to
examine a space of possible values, and select the best values by the per-
formance of each model. The performance is often evaluated by repeated
cross-validation:

1. For each combination of parameters to be optimized:

(a) Split the dataset into some disjunct subsets, for example 10, by
random sampling.

(b) For each subset:

i. Fit the model with the selected parameters on all but one of
the subsets.

ii. Predict at the remaining subset, i.e., the one not used for
model building, with the fitted model.

iii. Compute the goodness-of-fit statistics of fitting, typically the
root mean square error (RMSE) of prediction and the squared
correlation coefficient between the actual and fitted values,
i.e., 𝑅2 against a 1:1 line.

(c) Average the statistics for the disjunct subsets.

2. Search the table of results for the best results: lowest RMSE and
highest 𝑅2.

These values are then the recommended ones to fit a final model on all data.

The caret “Classification And REgression Training” package [11] imple-
ments this procedure.
require(caret)

This package is highly flexible and can be used to optimize 239 kinds of
data-driven models, including the ones we use in this tutorial. To see the
list of possible models:
length(names(getModelInfo()))

[1] 239

101

head(names(getModelInfo()),24)

[1] "ada" "AdaBag" "AdaBoost.M1"
[4] "adaboost" "amdai" "ANFIS"
[7] "avNNet" "awnb" "awtan"
[10] "bag" "bagEarth" "bagEarthGCV"
[13] "bagFDA" "bagFDAGCV" "bam"
[16] "bartMachine" "bayesglm" "binda"
[19] "blackboost" "blasso" "blassoAveraged"
[22] "bridge" "brnn" "BstLm"

Many more details are given in the caret package on-line book20. The pack-
age is highly adaptable, and before applying it in a production environment,
carefully read the documentation. Here we just present a simple case.

The principal function of the caret package is train, which implements the
cross-validation procedure and reports the optimum combination of param-
eters. To use this, we have to set up the following arguments:

1. a design matrix x of predictor values for each observation;

2. a response vector y of known values for each observation;

3. the tuneGrid argument with the names and range of values for the
parameters to be tuned;

4. the method argument, which says which data-driven method to opti-
mize;

5. the trControl argument, which specifies the optimization criterion,
using the trainControl function.

Task 92 : Optimize a random forest model. •

The caret package supports random forest models implemented in the
ranger package.

We create a matrix with all combinations of the two parameters, with the
expand.grid function. The columns are named the same as the tuning
parameters, which we obtain with the getModelInfo function:
getModelInfo("ranger")$ranger$parameters

parameter class label
1 mtry numeric #Randomly Selected Predictors
2 splitrule character Splitting Rule
3 min.node.size numeric Minimal Node Size

For the meaning of each of these, see ?ranger and the explanations in the
journal article. Here we only have three predictors, so mtry can vary from 1
to 3. The splitting rule is set to "variance", the normal criterion for regres-
sion trees: the split is where the between-class variance is maximized and the
within-class variance is minimized. The minimum node size min.node.size
defaults to 5, we try smaller (more complex trees in the forest) and larger
(less complex) values.
20 http://topepo.github.io/caret/index.html

102

http://topepo.github.io/caret/index.html

dim(preds <- ne.df[, c("E", "N", "ELEVATION_")])

[1] 305 3

length(response <- ne.df[, "ANN_GDD50"])

[1] 305

system.time(
ranger.tune <- train(x = preds, y = response, method="ranger",

tuneGrid = expand.grid(.mtry = 1:3,
.splitrule = "variance",
.min.node.size = 1:10),

trControl = trainControl(method = 'cv'))
)

user system elapsed
20.124 2.303 4.964

print(ranger.tune)

Random Forest
##
305 samples
3 predictor
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 274, 274, 273, 274, 276, 275, ...
Resampling results across tuning parameters:
##
mtry min.node.size RMSE Rsquared MAE
1 1 197.5190 0.8882416 154.9209
1 2 198.6177 0.8869913 156.1293
1 3 201.1845 0.8846177 157.3081
1 4 200.5310 0.8852271 157.3311
1 5 200.3875 0.8854635 157.3609
1 6 200.3338 0.8867208 157.7577
1 7 201.0084 0.8860766 157.6522
1 8 202.1988 0.8847521 159.0614
1 9 201.6555 0.8861695 159.0470
1 10 203.1736 0.8845083 160.0833
2 1 200.3364 0.8843045 159.7509
2 2 200.1645 0.8845410 158.9134
2 3 199.9086 0.8843256 159.6087
2 4 199.6293 0.8849575 158.8335
2 5 198.7004 0.8864801 157.8884
2 6 199.1197 0.8860764 157.8304
2 7 199.8209 0.8851734 159.4180
2 8 199.6407 0.8849978 158.4018
2 9 200.0531 0.8850541 158.5416
2 10 200.1777 0.8847316 158.5939
3 1 202.7557 0.8809174 163.0506
3 2 202.6245 0.8811076 163.1930
3 3 202.6026 0.8811257 163.6100
3 4 201.9123 0.8818638 162.4594
3 5 203.1566 0.8805201 163.1596
3 6 202.7799 0.8810873 163.1450
3 7 202.7258 0.8811961 162.3679
3 8 201.9091 0.8820909 161.7236
3 9 202.4731 0.8812187 161.9962
3 10 202.3668 0.8816545 161.6169
##
Tuning parameter 'splitrule' was held constant at a value of variance
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were mtry = 1, splitrule
= variance and min.node.size = 1.

names(ranger.tune$result)

103

[1] "mtry" "splitrule" "min.node.size" "RMSE"
[5] "Rsquared" "MAE" "RMSESD" "RsquaredSD"
[9] "MAESD"

ix <- which.min(ranger.tune$result$RMSE)
ranger.tune$result[ix, c(1,3,4)]

mtry min.node.size RMSE
1 1 1 197.519

ix <- which.max(ranger.tune$result$Rsquared)
ranger.tune$result[ix, c(1,3,5)]

mtry min.node.size Rsquared
1 1 1 0.8882416

ix <- which.min(ranger.tune$result$MAE)
ranger.tune$result[ix, c(1,3,6)]

mtry min.node.size MAE
1 1 1 154.9209

plot.train(ranger.tune, metric="RMSE")
plot.train(ranger.tune, metric="Rsquared")
plot.train(ranger.tune, metric="MAE")

Minimal Node Size

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

198

199

200

201

202

203

2 4 6 8 10

#Randomly Selected Predictors
1 2 3

Minimal Node Size

R
sq

ua
re

d
(C

ro
ss

−
V

al
id

at
io

n)

0.882

0.884

0.886

0.888

2 4 6 8 10

#Randomly Selected Predictors
1 2 3

104

Minimal Node Size
M

A
E

 (
C

ro
ss

−
V

al
id

at
io

n)

156

158

160

162

164

2 4 6 8 10

#Randomly Selected Predictors
1 2 3

In this case the three optimization criteria give different recommendations.
Here it’s clear that for mtry that 2 is optimal for all of RMSE, MAE and 𝑅2.
This is different from the default 3/3 = 1. For all of these min.node.size=6
is best.

Each run of train will give different results, because of the different random
splits into test and train sets.

Once we’ve selected an optimal combination we fit a final model.

Task 93 : Build an optimal model and display its fit to known points. •

The ranger function requires a formula argument (as does randomForest):
(ranger.rf <- ranger(ANN_GDD50 ~ N + E + ELEVATION_, data=ne.df,

mtry=2, min.node.size=5))

Ranger result
##
Call:
ranger(ANN_GDD50 ~ N + E + ELEVATION_, data = ne.df, mtry = 2, min.node.size = 5)
##
Type: Regression
Number of trees: 500
Sample size: 305
Number of independent variables: 3
Mtry: 2
Target node size: 5
Variable importance mode: none
Splitrule: variance
OOB prediction error (MSE): 40600.49
R squared (OOB): 0.8767443

summary(ranger.fits <- predict(ranger.rf, data=ne.df)$predictions)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1148 2104 2461 2519 2902 3828

plot(ne.df$ANN_GDD50 ~ ranger.fits,
col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by ranger",
ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid(); abline(0,1)

105

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by ranger

A
ct

ua
l

NJ
NY
PA
VT

Task 94 : Predict over the grid with the optimized ranger model, add the
results to the dataframe, and summarize them. •
summary(dem.ne.m.df$pred.ranger <-

predict(ranger.rf, data=dem.ne.m.df)$predictions)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1210 2014 2320 2444 2837 3817

Task 95 : Display the map. •
display.prediction.map("pred.ranger",

"Annual GDD, base 50F, ranger RF prediction",
"GDD50")

106

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50

1000

2000

3000

4000

Annual GDD, base 50F, ranger RF prediction

10.4 Cubist

A popular data-driven model is Cubist, derived from the C4.5 models [20]
but extensively modified and implemented as R package Cubist, an R port
of the Cubist GPL C code released by RuleQuest21.
library(Cubist)

A good introduction to Cubist is by Kuhn and Johnson [12, §8.7] as well as
the vignette distributed with the Cubist package:
vignette("cubist")

Cubist is similar to regression trees, but instead of single values at leaves
it creates a multivariate linear regression for the cases in the leaf. As the
vignette explains:

“A tree is grown where the terminal leaves contain linear regres-
sion models. These models are based on the predictors used in
previous splits. Also, there are intermediate linear models at
each step of the tree. A prediction is made using the linear re-
gression model at the terminal node of the tree, but is ‘smoothed’
by taking into account the prediction from the linear model in
the previous node of the tree (which also occurs recursively up
the tree). The tree is reduced to a set of rules, which initially
are paths from the top of the tree to the bottom. Rules are
eliminated via pruning and/or combined for simplification.”

The advantage over regression trees is that the predictions are continous,
21 http://rulequest.com/cubist-info.html

107

http://rulequest.com/cubist-info.html

not discrete values equal to the number of leaves in the regression tree. The
advantage over random forests is that the model can be interpreted, to a
certain extent. A disadvantage of Cubist is that its algorithm is not easy to
understand; however its results are generally quite good.

Cubist models can be improved in two ways: (1) with “committees” of mod-
els and (2) by adjusting predictions based on nearest neighbours in feature
(predictor) space.

Committees are a form of boosting. A set of model trees are built in se-committees
quence. The first tree is the standard Cubist best tree, using the original
data in the training set. Subsequent trees are built from adjusted versions to
the training set. If the previous Cubist tree over(under)-predicted a value,
the response is adjusted down(up)ward for the next model, before it is fit.
The final prediction is the average of the predictions from each model tree.
The idea here is that the predictions by the sequence of trees vary around
the “true” value.

This prediction from the set of trees can then be adjusted using the values ofnearest
neighbours some number of nearest neighbours in feature space. The idea here is that

the overall model fits all the training data, but locally we may have some
unknown factor that operates only in a local region of feature space, so if
we have data from that region, we should give it more weight. Specifically,
if the single model or committee predict a value 𝑦̂, the adjusted prediction
based on the 𝐾 nearest-neighbours in feature space is:

𝑦̂′ =
1

𝐾

𝐾∑
𝑖=1

𝑤𝑖
[
𝑡𝑖 + (𝑦̂ − 𝑡̂𝑖)

]
(22)

where 𝑡𝑖 is the actual value of the neighbour, 𝑡̂𝑖 is its value predicted by the
model tree(s), and 𝑤𝑖 is the weight given to this neighbour for the adjust-
ment, based on its distance 𝐷𝑖 from the target point. These are computed
as 𝑤𝑖 = 1/(𝐷𝑖 + 0.5) and normalized to sum to one.

In addition, to guard against using neighbours that are too far from the
target point, the proposed set of neighbors are filtered based on the average
pairwise distance of data points in the training set. In our case study, it is
likely that Mt. Mansfield (VT) is too far from any other observation points
to have any neighbours.

Obviously, the question is how many committees and neighbours to use, if
any. The caret package can be used to tune these parameters (S10.3.

Task 96 : Determine the optimum number of committees and neighbours for
a Cubist model to predict the growing degree days from Northing, Easting,
and Elevation. •

We do this with the train function, specifying the method argument as
'cubist'.
all.preds <- ne.df[, c("N", "E", "ELEVATION_")]
all.resp <- ne.df[, "ANN_GDD50"]

108

system.time(
cubist.tune <- train(x = all.preds, y = all.resp, "cubist",

tuneGrid = expand.grid(.committees = 1:12,
.neighbors = 0:8),

trControl = trainControl(method = 'cv'))
)

user system elapsed
2.515 0.011 2.531

print(cubist.tune)

Cubist
##
305 samples
3 predictor
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 273, 275, 273, 275, 273, 273, ...
Resampling results across tuning parameters:
##
committees neighbors RMSE Rsquared MAE
1 0 210.2573 0.8718786 167.6044
1 1 221.5769 0.8628628 178.9769
1 2 210.6112 0.8747445 167.1347
1 3 208.1492 0.8769341 163.0249
1 4 206.4790 0.8783113 161.3244
1 5 203.7662 0.8814272 158.7046
1 6 201.8184 0.8838142 157.7601
1 7 200.8640 0.8850150 157.6147
1 8 200.3459 0.8855277 157.6202
2 0 205.0058 0.8790333 163.0586
2 1 219.6760 0.8660398 176.0418
2 2 208.9411 0.8777240 164.6446
2 3 206.5594 0.8799319 160.7576
2 4 204.7528 0.8814618 159.4444
2 5 201.8613 0.8847895 156.9040
2 6 199.7938 0.8873324 155.6350
2 7 198.6461 0.8887497 155.3224
2 8 197.9578 0.8894739 155.1466
3 0 202.8691 0.8811647 161.8315
3 1 218.8401 0.8657395 176.6138
3 2 207.4001 0.8783374 164.9011
3 3 204.8648 0.8806994 160.6794
3 4 203.1704 0.8821180 159.2110
3 5 200.4419 0.8851970 156.7189
3 6 198.4931 0.8875712 155.3964
3 7 197.4822 0.8888352 154.9244
3 8 196.9101 0.8894136 154.7508
4 0 202.9098 0.8815437 160.6203
4 1 218.7164 0.8663360 176.2514
4 2 207.6422 0.8783791 164.5841
4 3 205.1735 0.8806853 160.3500
4 4 203.4089 0.8822065 158.9820
4 5 200.6324 0.8853992 156.4587
4 6 198.6518 0.8878509 155.1050
4 7 197.6268 0.8891508 154.6902
4 8 197.0396 0.8897766 154.5571
5 0 201.8732 0.8826101 160.3219
5 1 218.5642 0.8658323 175.6422
5 2 207.5171 0.8780473 164.2672
5 3 205.1187 0.8802642 160.8382
5 4 203.4495 0.8816942 159.7198
5 5 200.7792 0.8847665 157.4239
5 6 198.8099 0.8872013 156.1177
5 7 197.7537 0.8885439 155.7233
5 8 197.1678 0.8891688 155.5246
6 0 201.7332 0.8827977 159.1467

109

6 1 218.5206 0.8660110 175.0839
6 2 207.7230 0.8778793 163.9450
6 3 205.3653 0.8800645 160.4224
6 4 203.6321 0.8815789 159.0473
6 5 200.9397 0.8847180 156.7534
6 6 198.9269 0.8872355 155.3609
6 7 197.8466 0.8886171 155.0002
6 8 197.2299 0.8892757 154.7465
7 0 202.6818 0.8820772 160.5479
7 1 218.2121 0.8664657 175.3425
7 2 207.6407 0.8781200 164.5592
7 3 205.2958 0.8802922 160.7983
7 4 203.5931 0.8817662 159.6460
7 5 200.9625 0.8848071 157.3061
7 6 198.9925 0.8872597 155.9881
7 7 197.9128 0.8886249 155.6001
7 8 197.3177 0.8892481 155.3269
8 0 201.7402 0.8829329 159.2934
8 1 217.9982 0.8668571 174.9493
8 2 207.4035 0.8785513 163.9813
8 3 205.1164 0.8806774 160.2740
8 4 203.4035 0.8821619 159.1970
8 5 200.7747 0.8852188 156.8818
8 6 198.8194 0.8876589 155.5882
8 7 197.7478 0.8890136 155.2713
8 8 197.1300 0.8896540 154.9691
9 0 203.0686 0.8816014 160.9398
9 1 218.3989 0.8663564 175.6231
9 2 207.9935 0.8777747 165.0536
9 3 205.7117 0.8798509 161.2064
9 4 204.0382 0.8812716 160.1078
9 5 201.4694 0.8842362 157.7847
9 6 199.5703 0.8866051 156.5587
9 7 198.5427 0.8879052 156.2332
9 8 197.9861 0.8884772 156.0188
10 0 202.3774 0.8819816 160.2178
10 1 218.1874 0.8666635 175.0949
10 2 207.8090 0.8780487 164.4668
10 3 205.6584 0.8799742 161.0972
10 4 204.0275 0.8813430 160.0624
10 5 201.4581 0.8843262 157.6882
10 6 199.5502 0.8867127 156.4890
10 7 198.5114 0.8880297 156.1709
10 8 197.9246 0.8886317 155.9063
11 0 203.3921 0.8809251 161.3420
11 1 218.6205 0.8660776 175.5133
11 2 208.3638 0.8772632 165.1390
11 3 206.2135 0.8791630 161.7741
11 4 204.6161 0.8804841 160.7965
11 5 202.0548 0.8834497 158.3949
11 6 200.1707 0.8858075 157.2140
11 7 199.1492 0.8871015 156.8858
11 8 198.5938 0.8876680 156.6825
12 0 203.0938 0.8808801 160.8818
12 1 218.6963 0.8660353 175.5390
12 2 208.4334 0.8772327 165.0972
12 3 206.3024 0.8791101 161.5688
12 4 204.6967 0.8804346 160.5577
12 5 202.1413 0.8834106 158.2277
12 6 200.2471 0.8857904 157.0856
12 7 199.2170 0.8870987 156.7516
12 8 198.6299 0.8876975 156.5114
##
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were committees = 3 and
neighbors = 8.

plot(cubist.tune, metric="RMSE")
plot(cubist.tune, metric="Rsquared")

110

plot(cubist.tune, metric="MAE")

#Committees

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)
200

205

210

215

220

2 4 6 8 10 12

#Instances
0
1
2

3
4
5

6
7
8

#Committees

R
sq

ua
re

d
(C

ro
ss

−
V

al
id

at
io

n)

0.865

0.870

0.875

0.880

0.885

0.890

2 4 6 8 10 12

#Instances
0
1
2

3
4
5

6
7
8

#Committees

M
A

E
 (

C
ro

ss
−

V
al

id
at

io
n)

155

160

165

170

175

180

2 4 6 8 10 12

#Instances
0
1
2

3
4
5

6
7
8

Your results will be different, because of the randomness in the splits from
method. So, your choice of optimal values may also be different than those
presented here.

In this case committees improve the model. Although the best result is
with 10 committees, looking at the graphs we can see that 6 gives almost
equally good results, so we prefer the simpler model. Neighbours definitely
do improve the model. Using one neighbour (the closest in feature space)
makes the model much worse – too much fine adjustment to the training set.
Using two to seven neighbours gives improvement, using eight is only slightly
better. This shows that the overall model can benefit by local adjustment.

111

Task 97 : Built an “optimum” Cubist model. •

The model is fit with the cubist function; the optimal number of committees
is specified at model building with the committees argument. Adjustment
by neighbours is done at prediction, because only then do we know which
point we are predicting, hence which are its nearest neighbours. This is
specified by the neighbors to the predict function of the Cubist package.
require(Cubist)
c.model <- cubist(x = all.preds, y = all.resp, committees=6)
summary(c.model)

##
Call:
cubist.default(x = all.preds, y = all.resp, committees = 6)
##
##
Cubist [Release 2.07 GPL Edition] Sat May 11 11:01:09 2024

##
Target attribute `outcome'
##
Read 305 cases (4 attributes) from undefined.data
##
Model 1:
##
Rule 1/1: [109 cases, mean 2114.8, range 795 to 2845, est err 151.9]
##
if
N > -20368.92
then
outcome = 2715.4 - 0.496 ELEVATION_ - 0.00105 N - 0.00068 E
##
Rule 1/2: [196 cases, mean 2741.5, range 1335 to 4021, est err 168.7]
##
if
N <= -20368.92
then
outcome = 2704 - 0.00264 N - 0.606 ELEVATION_ - 0.00021 E
##
Model 2:
##
Rule 2/1: [305 cases, mean 2517.5, range 795 to 4021, est err 171.2]
##
outcome = 2826.9 - 0.599 ELEVATION_ - 0.00205 N - 0.00023 E
##
Model 3:
##
Rule 3/1: [174 cases, mean 2171.9, range 795 to 3084, est err 172.4]
##
if
N > -145485.8
then
outcome = 2642.4 - 0.474 ELEVATION_ - 0.00077 E - 0.00045 N
##
Rule 3/2: [74 cases, mean 2729.1, range 1774 to 3428, est err 178.6]
##
if
N <= -145485.8
ELEVATION_ > 330
then
outcome = 1956.9 - 0.00513 N - 0.457 ELEVATION_ - 9e-05 E
##
Rule 3/3: [76 cases, mean 3090.3, range 2078 to 4021, est err 182.4]
##
if

112

ELEVATION_ <= 330
then
outcome = 3106.6 - 2.148 ELEVATION_ - 0.00188 N
##
Model 4:
##
Rule 4/1: [305 cases, mean 2517.5, range 795 to 4021, est err 170.7]
##
outcome = 2842.7 - 0.613 ELEVATION_ - 0.00206 N - 0.0003 E
##
Model 5:
##
Rule 5/1: [174 cases, mean 2171.9, range 795 to 3084, est err 174.1]
##
if
N > -145485.8
then
outcome = 2629.8 - 0.462 ELEVATION_ - 0.00071 E - 0.00043 N
##
Rule 5/2: [74 cases, mean 2729.1, range 1774 to 3428, est err 183.9]
##
if
N <= -145485.8
ELEVATION_ > 330
then
outcome = 1925.4 - 0.0052 N - 0.45 ELEVATION_ - 6e-05 E
##
Rule 5/3: [76 cases, mean 3090.3, range 2078 to 4021, est err 182.7]
##
if
ELEVATION_ <= 330
then
outcome = 3112.7 - 2.176 ELEVATION_ - 0.00185 N
##
Model 6:
##
Rule 6/1: [305 cases, mean 2517.5, range 795 to 4021, est err 171.1]
##
outcome = 2854.2 - 0.623 ELEVATION_ - 0.00208 N - 0.00036 E
##
##
Evaluation on training data (305 cases):
##
Average |error| 169.9
Relative |error| 0.36
Correlation coefficient 0.93
##
##
Attribute usage:
Conds Model
##
43% 100% N
16% 100% ELEVATION_
92% E
##
##
Time: 0.0 secs

Rule 1 splits at N = -20368.92, near the centre of the map. There is then
a slightly different linear regression for the two halves. The elevation and
Northing coefficients are both larger for the southern half. Rule 2 has no
split, just a single linear model. It is not the same as the linear model fit in
§4, because it is fit based on the values adjusted by Rule 1 predictions. Rule
3 again splits on Northing, but much further south, at N = -145485.8, and
on low elevations, 330.

113

Task 98 : Examine the fit of the Cubist model to the known points. •
predictive accuracy
cubist.fits <- predict(c.model, newdata=all.preds,

neighbors=cubist.tune$bestTune$neighbors)
Test set RMSE
sqrt(mean((cubist.fits - all.resp)^2))

[1] 164.9617

cor(cubist.fits, all.resp)^2 # R^2

[1] 0.918133

plot(ne.df$ANN_GDD50 ~ cubist.fits,
col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by cubist",
ylab="Actual",
main="Annual GDD50")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid(); abline(0,1)

0 1000 2000 3000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Annual GDD50

Fitted by cubist

A
ct

ua
l

NJ
NY
PA
VT

Notice that this Cubist model severely underpredicts the lowest GDD50 at
Mount Mansfield (VT). This is because it is too far in elevation space from
any other observation points to have any neighbours that could modify the
linear regressions in the rule set, which reduce GDD50 with elevation.

Task 99 : Predict over the study area with the Cubist model and display
the resulting map. •
summary(dem.ne.m.df$pred.cubist <-

predict(c.model, newdata=dem.ne.m.df,
neighbours=cubist.tune$bestTune$neighbors))

Min. 1st Qu. Median Mean 3rd Qu. Max.
265.7 2040.0 2363.4 2461.9 2898.8 3748.3

114

display.prediction.map("pred.cubist",
"Annual GDD, base 50F, Cubist prediction",
"GDD50")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD, base 50F, Cubist prediction

Although several of the rules split on Northing, that is not visible in this
map, because the results of each rule are averaged.

10.5 Additional covariables

Machine learning models are generally applied to problems with large num-
bers of predictors. In the example above we only used three. To illustrate
the more common situation, we add some additional predictors that might
be related to agricultural climate.

• The two Great Lakes in this region (Erie and Ontario) may have a
local climate effect, because of the high heat capacity of the lake water,
which can extend the late summer into the early fall.

• The Atlantic Ocean has a local cooling effect along the shore, especially
on Long Island.

• Local terrain may influence climate. For example, narrow valleys in
the Finger Lakes regions are known as “frost pockets” and often have
morning ground fogs in spring and early summer.

– The multiresolution index of valley bottom flatness (MRVBF) [5]
identifies valley bottoms based on their topographic signature as
flat low-lying areas, at increasingly-broad scales, and combines
these into a single index.

115

– The terrain ruggedness index (TRI) [21] expresses heterogeneity.
It is the sum change in elevation between a grid cell and its eight
neighbours.

• Population density may affect local climate. Urban areas affect the lo-
cal climate, typically making it warmer, whereas very sparsely-populated
rural areas are typically cooler, with more precipitation as snow.

10.6 Models with the extended set of predictors

Now we investigate whether any of these covariables separately or in combi-
nation improve modelling and prediction of the regional climate, specifically
the 30-year 1971-2000 average annual growing degree days, base 50◦F.
pred.field.names <- c("ELEVATION_", "E", "N",

"dist.lakes", "dist.coast",
"mrvbf", "tri3", "pop15", "pop2pt5")

pred.field.names.base <- c("ELEVATION_", "E", "N")
(model.formula <- paste("ANN_GDD50 ~",

paste0(pred.field.names, collapse=" + ")))

[1] "ANN_GDD50 ~ ELEVATION_ + E + N + dist.lakes + dist.coast + mrvbf + tri3 + pop15 + pop2pt5"

(model.formula.base <- paste("ANN_GDD50 ~",
paste0(pred.field.names.base, collapse=" + ")))

[1] "ANN_GDD50 ~ ELEVATION_ + E + N"

names(dem.ne.m.df)

[1] "E" "N" "ELEVATION_"
[4] "dist.lakes" "dist.coast" "mrvbf"
[7] "tri3" "pop15" "pop2pt5"
[10] "pred.ols" "pred.gls" "diff.gls.ols"
[13] "ok.gls.resid" "ok.gls.resid.var" "pred.rkgls"
[16] "pred.ked" "diff.rkgls.ked" "pred.ked.nn"
[19] "pred.ked.nn.sd" "diff.ked" "diff.okrk.ked.pred"
[22] "pred.gam" "pred.gam.se" "diff.gls.gam"
[25] "diff.rkgls.gam" "pred.rt" "pred.rf"
[28] "diff.gls.rf" "pred.ranger" "pred.cubist"

10.6.1 Relation among predictors

First, investigate the relation among the predictors.

Pairwise correlation Examine the pairwise relation between predictors with
Pearson (parametric) correlation.
cor(ne.df[, pred.field.names])

ELEVATION_ E N dist.lakes dist.coast
ELEVATION_ 1.0000000 -0.38731894 0.2229499 -0.49108955 0.516957928
E -0.3873189 1.00000000 0.3120844 0.50453701 -0.640536062
N 0.2229499 0.31208438 1.0000000 -0.60954121 0.491465725
dist.lakes -0.4910895 0.50453701 -0.6095412 1.00000000 -0.843458541
dist.coast 0.5169579 -0.64053606 0.4914657 -0.84345854 1.000000000
mrvbf -0.1942348 -0.14834963 -0.1745231 0.03825679 0.007069881
tri3 0.3464743 0.16615012 0.2902955 -0.08670920 0.104353048
pop15 -0.5603737 0.19132709 -0.4805457 0.51570539 -0.588043299
pop2pt5 -0.5409465 0.08570716 -0.3810346 0.35285482 -0.406210533
mrvbf tri3 pop15 pop2pt5
ELEVATION_ -0.194234793 0.3464743 -0.5603737 -0.54094650
E -0.148349630 0.1661501 0.1913271 0.08570716

116

N -0.174523066 0.2902955 -0.4805457 -0.38103463
dist.lakes 0.038256788 -0.0867092 0.5157054 0.35285482
dist.coast 0.007069881 0.1043530 -0.5880433 -0.40621053
mrvbf 1.000000000 -0.2890518 0.1215610 0.24153216
tri3 -0.289051831 1.0000000 -0.2965867 -0.24542933
pop15 0.121560957 -0.2965867 1.0000000 0.76256951
pop2pt5 0.241532159 -0.2454293 0.7625695 1.00000000

corrplot::corrplot(cor(ne.df[, pred.field.names]),
diag = FALSE, type = "upper",
method = "ellipse",
addCoef.col = "black")

−0.39 0.22

0.31

−0.49

0.5

−0.61

0.52

−0.64

0.49

−0.84

−0.19

−0.15

−0.17

0.04

0.01

0.35

0.17

0.29

−0.09

0.1

−0.29

−0.56

0.19

−0.48

0.52

−0.59

0.12

−0.3

−0.54

0.09

−0.38

0.35

−0.41

0.24

−0.25

0.76

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
E N di

st
.la

ke
s

di
st

.c
oa

st

m
rv

bf

tr
i3

po
p1

5

po
p2

pt
5

ELEVATION_

E

N

dist.lakes

dist.coast

mrvbf

tri3

pop15

The distances to lakes and coast are inversely related, and these are related
to the coordinates, because of the geography. Of course the two popula-
tion densitities are positively correlated. So there is definite colinearity of
predictors.

PCA Examine the multivariate relation between predictors with Principal
Components Analysis (PCA)
pc <- prcomp(ne.df[, pred.field.names], scale. = TRUE, retx=TRUE)
summary(pc)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.9722 1.3402 1.0421 0.90030 0.84913 0.60906
Proportion of Variance 0.4322 0.1996 0.1207 0.09006 0.08011 0.04122
Cumulative Proportion 0.4322 0.6317 0.7524 0.84246 0.92257 0.96379
PC7 PC8 PC9
Standard deviation 0.44312 0.35714 0.04461
Proportion of Variance 0.02182 0.01417 0.00022
Cumulative Proportion 0.98561 0.99978 1.00000

pc$rotation

PC1 PC2 PC3 PC4
ELEVATION_ 0.3790049 0.009868823 -0.40853219 0.02467677
E -0.2095170 -0.605201070 0.33442852 0.16910725

117

N 0.3109224 -0.314313343 0.62114856 -0.12705918
dist.lakes -0.4193089 -0.212978286 -0.29841764 0.29538055
dist.coast 0.4326850 0.280778692 0.15863513 -0.18364982
mrvbf -0.1039718 0.409092410 0.35508637 0.57166123
tri3 0.1774628 -0.432105357 -0.24569463 -0.23203648
pop15 -0.4209219 0.114890542 0.03467234 -0.42571320
pop2pt5 -0.3650623 0.208263038 0.18319644 -0.52134788
PC5 PC6 PC7 PC8
ELEVATION_ -0.162470428 0.79755536 0.12334465 0.105094901
E 0.009735334 0.25594993 0.07815143 0.057295979
N 0.012651062 0.16333795 -0.03239904 0.167173955
dist.lakes -0.026389104 -0.07907947 0.14921339 0.685065908
dist.coast -0.022078707 -0.21343002 -0.01103666 0.674014967
mrvbf -0.587486966 0.10787655 -0.10906923 -0.016268807
tri3 -0.736527939 -0.31693438 -0.14230730 -0.066428423
pop15 -0.056171541 0.30501125 -0.70805527 0.171490413
pop2pt5 -0.285298260 0.12162744 0.64942480 0.005220769
PC9
ELEVATION_ 0.0006230410
E -0.6118814943
N 0.5888366804
dist.lakes 0.3224711541
dist.coast -0.4178478488
mrvbf 0.0033655551
tri3 -0.0004812559
pop15 -0.0158959011
pop2pt5 0.0048274545

biplot(pc)
biplot(pc, choices=3:4)

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

PC1

P
C

2

28522853

2854

2855
2856

2857
2858

2859
2860

2861

2862
2863

2864

2865
2866

2867

2868

2869

2870
2871

28722873
28742875

2876

2877

2878
2879

2880

2881

2882

2883

2884

2885

2886

2887

28882889

2890

3014

3015

3016

3017

3018
30193020

3021

3022

3023

3024

3025

3026
3027

3028 3029

3030

3031

3032

3033

3034

3035

3036

3037

303830393040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051 3052

3053

3054

3055

3056

3057

3058
3059

3060

3061
3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

30783079

30803081

3082

3083

3084

3085
3086

3087

30883089

3090

3091

3092

3093

3094

3095

30963097
3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117
3118

3119

3120

3121

3122

3123

3124

3125

3126

3127 3128

3129

3130

3131

3132

3133

3134

3135
31363137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3783

3784
3785

3786

3787

3788 3789

3790 3791
3792

3793

3794

3795

3796

3797

3798
3799

3800

3801

3802

3803

3804

3805

3806

3807
3808

3809

38103811

3812 3813

3814

3815
3816

3817

3818

3819

3820

3821

3822

3823

3824

3825
3826

3827

3828
3829

3830 3831

3832

38333834

3835

3836

3837

3838

3839

3840

38413842

3843

3844

3845

3846
3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865
3866

3867
3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883
3884

3885

3886
3887

3888

3889

3890

4704

4705

4706

47074708

4709

4710
4711

4712

4713

4714

4715

4716

47174718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

ELEVATION_

E

N

dist.lakes

dist.coast

mrvbf

tri3

pop15

pop2pt5

118

−0.2 −0.1 0.0 0.1 0.2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

PC3

P
C

4 2852

2853

2854

2855

2856

2857
2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875 2876

2877

2878

2879

2880

2881

2882

28832884 2885

2886

2887

2888

2889

2890

3014

3015

3016

3017

3018

3019

3020
3021

3022

3023 3024

3025

3026

3027

3028

3029

3030
3031

3032

3033

3034

3035

3036

3037

3038

30393040
3041

3042

3043

3044

3045

3046
3047

3048

3049

3050

3051

3052

3053 3054
3055

3056
3057

3058

30593060
30613062
3063

3064

3065

3066

3067

3068
3069

3070

3071

3072

3073

3074

3075

3076

3077

30783079

3080

3081

3082

3083

3084

30853086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096
3097

3098

3099

3100

3101

3102

3103

3104

3105

31063107 3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124
3125

3126
3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144 3145

3146

3783

3784
3785 3786

3787

3788

3789

3790

37913792

3793

3794
3795 3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818
3819

3820

3821
3822

3823

3824

3825
3826

3827

3828

3829

3830

3831

3832

38333834

3835
3836

3837

3838
3839

3840
3841

3842
3843

3844

3845

3846

3847

3848

3849

3850

3851

3852
3853

3854

3855

3856

3857

3858

3859

3860

3861

38623863

3864

3865

3866

3867

3868

3869
3870

3871

3872

3873

3874

3875

3876
3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889
3890

4704
4705

4706

47074708

4709

4710
4711

4712

4713

4714

47154716

4717

4718 4719

4720 4721

4722

4723

4724

4725

4726

4727

4728

−10 −5 0 5 10

−
10

−
5

0
5

10

ELEVATION_

E

N

dist.lakes

dist.coast

mrvbf

tri3

pop15

pop2pt5

The two populations are closely positively related in PC1 and PC2. Lakes
and coasts are almost perfectly inversely related in PC1 and PC2. Popu-
lation is correlated with distance to lakes (and so inverse to distance from
coast); this is a geographic accident because population is denser towards
the SE (NYC, NJ). The terrain indices and geography also have a fortuitous
relation. We can not easily reduce these PCs to meaningful factors.

10.6.2 Random forest with additional covariables

All the previous methods could be extended with this set of variables. Here
we look at one, Random Forest.
dim(preds <- ne.df[, pred.field.names])

[1] 305 9

length(response <- ne.df[, "ANN_GDD50"])

[1] 305

system.time(
ranger.tune <- train(x = preds, y = response,

method="ranger",
tuneGrid = expand.grid(.mtry = 2:7,

.splitrule = "variance",

.min.node.size = 1:10),
trControl = trainControl(method = 'cv'))

)

user system elapsed
66.632 4.630 13.846

View the training results:
ix <- which.min(ranger.tune$result$RMSE)
ranger.tune$result[ix, c(1,3,4)]

mtry min.node.size RMSE

119

31 5 1 204.2634

ix <- which.max(ranger.tune$result$Rsquared)
ranger.tune$result[ix, c(1,3,5)]

mtry min.node.size Rsquared
31 5 1 0.8792542

ix <- which.min(ranger.tune$result$MAE)
ranger.tune$result[ix, c(1,3,6)]

mtry min.node.size MAE
31 5 1 162.0682

plot.train(ranger.tune, metric="RMSE")
plot.train(ranger.tune, metric="Rsquared")

Minimal Node Size

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

205

210

215

2 4 6 8 10

#Randomly Selected Predictors
2
3

4
5

6
7

Minimal Node Size

R
sq

ua
re

d
(C

ro
ss

−
V

al
id

at
io

n)

0.865

0.870

0.875

2 4 6 8 10

#Randomly Selected Predictors
2
3

4
5

6
7

All three methods agree on five predictors to try at each split, and node size
of three. There is not much improvement past mtry=4, and min.node.size
from 1 to 3 give similar results.

Build a model with the optimal parameters:
rf.ext <- ranger(model.formula,

data=ne.df, importance="impurity", mtry=4, min.node.size=3,
oob.error=TRUE, num.trees=1024)

print(rf.ext)

Ranger result
##
Call:

120

ranger(model.formula, data = ne.df, importance = "impurity", mtry = 4, min.node.size = 3, oob.error = TRUE, num.trees = 1024)
##
Type: Regression
Number of trees: 1024
Sample size: 305
Number of independent variables: 9
Mtry: 4
Target node size: 3
Variable importance mode: impurity
Splitrule: variance
OOB prediction error (MSE): 41773.81
R squared (OOB): 0.8731823

str(rf.ext, max.level=1)

List of 16
$ predictions : num [1:305] 3484 3465 3563 3505 2891 ...
$ num.trees : num 1024
$ num.independent.variables: num 9
$ mtry : num 4
$ min.node.size : num 3
$ variable.importance : Named num [1:9] 14568004 4201191 24527912 27200127 5687762 ...
..- attr(*, "names")= chr [1:9] "ELEVATION_" "E" "N" "dist.lakes" ...
$ prediction.error : num 41774
$ forest :List of 7
..- attr(*, "class")= chr "ranger.forest"
$ splitrule : chr "variance"
$ treetype : chr "Regression"
$ r.squared : num 0.873
$ call : language ranger(model.formula, data = ne.df, importance = "impurity", mtry = 4, min.node.size = 3, oob.error = TRUE, | __truncated__
$ importance.mode : chr "impurity"
$ num.samples : int 305
$ replace : logi TRUE
$ dependent.variable.name : chr "ANN_GDD50"
- attr(*, "class")= chr "ranger"

round(rf.ext$prediction.error/rf.ext$num.samples)

[1] 137

plot(rf.ext$predictions, ne.df$ANN_GDD50, asp=1, col=ne.df$STATE, pch=20,
main="ANN_GDD50", ylab="Measured", xlab="Ranger RF fit")

abline(0,1); grid()
round(ranger::importance(rf.ext)/sum(ranger::importance(rf.ext)),3)

ELEVATION_ E N dist.lakes dist.coast mrvbf
0.147 0.042 0.247 0.274 0.057 0.013
tri3 pop15 pop2pt5
0.024 0.146 0.049

121

1000 2000 3000 4000

10
00

15
00

20
00

25
00

30
00

35
00

40
00

ANN_GDD50

Ranger RF fit

M
ea

su
re

d

Surprisingly, distance to lakes is the most important; this may be partially
substituting for Northing (also very important), but it also accounts for the
lake effect we noticed in the linear model residuals. Population at 15’ is
somewhat important; this may be reflecting the urban heat island effect in
the NY City area, but also the ocean nearby. The other areas of the coastline
may not have much effect.

The mean out-of-bag error is 137 annual GDD50.

Mapping:
dem.ne.m.df$pred.rf.ext <- predict(rf.ext, data=dem.ne.m.df)$predictions
summary(dem.ne.m.df$pred.rf.ext)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1232 2073 2359 2460 2856 3750

display.prediction.map("pred.rf.ext",
"Annual GDD, base 50F, ranger prediction, 9 predictors",
"GDD50")

122

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD, base 50F, ranger prediction, 9 predictors

The effect of the population grid is clear in the NYC area.

10.6.3 Variable importance in the extended model

A good way to visualize variable importance in random forests is the “min-
imum depth distribution”, i.e., at which depth in the trees each variable
is used. This is displayed by the plot_min_depth_distribution of the
randomForestExplainer package.

Task 100 : Compute and display the minimum depth distribution of the
9-predictor model. •

The effect of variable substitution is clear: when one predictor is not used at
a particular split, a correlated predictor can partially substitute for it. Here
we have N and dist.lakes as one pair; another is pop15 and dist.coast
as a substitute for ELEVATION (highest populations in the NYC area).
require(randomForestExplainer)
tmp <- min_depth_distribution(rf.ext)
plot_min_depth_distribution(tmp)

123

2.65

1.61

1.2

2.99

1.27

3.76

1.88

2.57

3.07

mrvbf

tri3

dist.coast

E

pop2pt5

pop15

ELEVATION_

dist.lakes

N

0 250 500 750 1000
Number of trees

V
ar

ia
bl

e

Minimal depth

0

1

2

3

4

5

6

7

NA

Distribution of minimal depth and its mean

10.7 Shapley values

The extended model is sufficiently complex to make interpretation difficult.
In the past several years there have been developments in so-called “Inter-
pretable Machine Learning”[18].

One method of interpreting models are the Shapley values. As explained
by Christoph Molnar[18] “[There is a] method from coalitional game theory
named [the] Shapley value. Assume that for one data point, the feature
values play a game together, in which they get the prediction as a payout.
The Shapley value tells us how to fairly distribute the payout among the
feature values.

“The ‘game’ is the prediction task for a single instance of the dataset. The
‘gain’ is the actual prediction for this instance minus the average prediction
for all instances. The ‘players’ are the feature values of the instance that
collaborate to receive the gain ….”

Thus the Shapley value for a predictor is its average marginal contribution

124

over all possible coalitions.

10.7.1 *Theory

The Shapley value is defined via a value function 𝑣𝑎𝑙 of players in the “game”
𝑆.

The Shapley value 𝜙 𝑗 (𝑣𝑎𝑙) of a feature 𝑗 ’s value is its contribution to the
payout, weighted and summed over all possible feature value combinations:

𝜙 𝑗 (𝑣𝑎𝑙) =
∑

𝑆⊆{1,..., 𝑝}\{ 𝑗 }

|𝑆 |! (𝑝 − |𝑆 | − 1)!
𝑝!

(𝑣𝑎𝑙 (𝑆 ∪ { 𝑗}) − 𝑣𝑎𝑙 (𝑆))

where 𝑆 is a subset of the features used in the model, 𝑥 is the vector of feature
values of the instance to be explained and 𝑝 is the number of features.

Thus 𝑣𝑎𝑙𝑥 (𝑆) is the prediction for feature values in set 𝑆 that are marginal-
ized over features that are not included in set 𝑆:

𝑣𝑎𝑙𝑥 (𝑆) =
∫

𝑓 (𝑥1, . . . , 𝑥𝑝)𝑑P𝑥∉𝑆 − 𝐸𝑋 (𝑓 (𝑋))

10.7.2 Practice

This is implemented in the “Interpretable Machine Learning” package iml.
This uses a Predictor object which holds any machine learning model and
the data to be used to analyze it.

Task 101 : Build a Predictor object for use with iml functions. •
require(iml)
matrix of predictors to be evaluated
X <- ne.df[, pred.field.names]
the
predictor <- Predictor$new(model = rf.ext, data = X, y = ne.df[, "ANN_GDD50"])

Task 102 : Compute the Shapley values for the predictors at some inter-
esting stations. •

Now we can compute the Shapley values. For example, the values for the
station with the fewest GDD50:
ix <- which.min(ne.df[, "ANN_GDD50"])
ne.df[ix, 2:3]

STATE STATION_NA
4716 VT MOUNT MANSFIELD

X[ix,]

ELEVATION_ E N dist.lakes dist.coast mrvbf
4716 3950 252835.5 230248.4 234949.7 353371 1.106688e-08
tri3 pop15 pop2pt5
4716 211.4725 1.358693 0.858197

shapley <- iml::Shapley$new(predictor, x.interest = X[ix,])
shapley$plot()

125

ELEVATION_=3950

N=230248.447162461

pop15=1.35869264602661

pop2pt5=0.858196973800659

E=252835.483952616

dist.lakes=234949.721155918

tri3=211.472473144531

mrvbf=1.10668780806122e−08

dist.coast=353370.958168614

−400 −300 −200 −100 0
phi

Actual prediction: 1134.48
Average prediction: 2517.12

The figure shows the actual values of each predictor at the observation point,
and the 𝜙 value, i.e., numerical contribution to the difference between actual
and average prediction. These sum to the difference. At this climate station
all contributions are negative, i.e., they assist in lowering the prediction from
the average. The elevation contributes the most; Northing is also important.

Compare to the Shapley values at a more southerly station, Pittsburgh (PA)
airport:
ix <- which(ne.df[, "STATION_NA"] == "PITTSBURGH INTL AP")
X[ix,]

ELEVATION_ E N dist.lakes dist.coast mrvbf
3861 1150 -358143.8 -213573.1 162488.5 454398.2 0.7345554
tri3 pop15 pop2pt5
3861 38.08511 2.48938 2.463774

shapley <- iml::Shapley$new(predictor, x.interest = X[ix,])
shapley$plot()

126

dist.lakes=162488.497742708

ELEVATION_=1150

tri3=38.0851058959961

dist.coast=454398.228409012

mrvbf=0.734555423259735

E=−358143.833914717

pop2pt5=2.46377372741699

pop15=2.48937964439392

N=−213573.115071714

0 100 200
phi

Actual prediction: 2880.62
Average prediction: 2517.12

Here the prediction is greater than the average, with positive contributions
by the negative Northing and the two population densities.

So we can see for each climate station the reason for its prediction. Molnar
emphasizes: “[B]e careful to interpret the Shapley value correctly: [it] is the
average contribution of a feature value to the prediction in different coalitions.
[It] is not the difference in prediction when we would remove the feature from
the model.”

10.7.3 Shapley Additive exPlanations (SHAP)

A slightly different approach to Shapley values for model interpretation are
the SHapley Additive exPlanations (SHAP), see Lundberg and Lee [14]
for details. Several packages have implemented SHAP, here we use the
fastshap package22. The explain function in this package requires a pre-
diction function, which in this case is just predict from the ranger package.
This is automatically called from the generic predict when the object is a
ranger model.

Task 103 : Compute the SHAP values for all predictors annd stations. •

Note the use of the nsim argument: “To obtain the most accurate results,
nsim should be set as large as feasibly possible.”
require(fastshap)
a prediction function
pfun <- function(object, newdata) {

predict(object, data = newdata)$predictions
}
matrix of predictors to be evaluated
X <- ne.df[, pred.field.names]

22 https://github.com/bgreenwell/fastshap

127

https://github.com/bgreenwell/fastshap

fshap <- fastshap::explain(object = rf.ext,
X = X,
shap_only = FALSE, # also return feature and baseline values
pred_wrapper = pfun,
nsim = 24)

names(fshap)

[1] "shapley_values" "feature_values" "baseline"

head(fshap$shapley_values)

ELEVATION_ E N dist.lakes dist.coast mrvbf
[1,] 173.6749 -34.058458 280.88285 219.021918 20.88760 -3.508396
[2,] 187.3322 -17.876824 294.64880 378.386759 57.64471 -6.101101
[3,] 217.8836 -0.258884 396.63361 397.426697 56.17958 12.274651
[4,] 166.7820 8.117839 321.85278 295.251817 46.86593 -10.436517
[5,] 130.4956 -23.104757 42.30555 -3.280741 11.48722 4.181186
[6,] 109.4734 -30.335904 37.62242 62.927985 16.55914 -2.318895
tri3 pop15 pop2pt5
[1,] 0.8316515 41.952440 6.760234
[2,] 2.5612183 72.251417 3.389438
[3,] 10.0883111 123.351508 34.706638
[4,] 14.8474460 22.442173 -27.788425
[5,] 1.4598796 9.515917 25.815321
[6,] 0.8486328 76.132392 66.479336

ne.df[1, 2:3]

STATE STATION_NA
2852 NJ ATLANTIC CITY AP

ne.df[1, pred.field.names]

ELEVATION_ E N dist.lakes dist.coast mrvbf
2852 60 123044.6 -337962.4 467665.8 9457.429 0.09103
tri3 pop15 pop2pt5
2852 4.444497 2.15009 2.339589

Each observation has a set of SHAP values. These are the contribution to
the difference between the observed value at that point and the average value
of all observations, i.e., how much this predictor affects the single prediction,
away from the “null” model of the overall average. For the first observation
we see that Northing and distance to the Great Lakes have the most effect;
elevation is also important.

To visualize all the SHAP values for all the predictors and observations we
can use the shapviz package. The shapviz function from this package
requires (1) a matrix of computed SHAP values, (2) a set of features for
which to display the values, (2) a list of observations.

Once the shapviz visualization object is set up, we can display the SHAP
values with the sv_importance function. We have a fairly small dataset and
number of predictors, so we can display all of them together in a so-called
”beehive” plot.

Task 104 : Show all the SHAP values as a “beehive” plot. •
require(shapviz)
sv.fshap <- shapviz(fshap,

X = ne.df[, pred.field.names],
bg_X = ne.df) # small dataset, can see all of them

class(sv.fshap)

128

[1] "shapviz"

sv_importance(sv.fshap, kind = "bee")

mrvbf

tri3

dist.coast

pop2pt5

E

pop15

ELEVATION_

dist.lakes

N

−250 0 250 500
SHAP value

F
ea

tu
re

 v
al

ue

Low

High

The dependence of the predictions on any predictor, vs. its value, and its
relation to any other single predictor, can be shown with the sv_dependence
function:

Task 105 : Show the SHAP values for distance to lakes, coloured by Nor-
thing. •
sv_dependence(sv.fshap, v = "dist.lakes", color_var = "N")
ix <- which(fshap$shapley_values[, "dist.lakes"] > 350)
ne.df[ix, 2:5]

STATE STATION_NA LATITUDE_D LONGITUDE_
2853 NJ ATLANTIC CITY MARINA 39.38 -74.43
2854 NJ AUDUBON 39.88 -75.08
2859 NJ CAPE MAY 2 NW 38.95 -74.93
2869 NJ INDIAN MILLS 2 W 39.80 -74.78
2875 NJ MILLVILLE MUNICIPAL AP 39.37 -75.08
2883 NJ SANDY HOOK 40.45 -73.98
2884 NJ SEABROOK FARMS 39.50 -75.23
2890 NJ WOODSTOWN PITTSGROV 4E 39.55 -75.17
3097 NY NEW YORK CITY CENTRAL PK 40.78 -73.97
3099 NY NEW YORK LA GUARDIA AP 40.78 -73.88
3842 PA MARCUS HOOK 39.82 -75.42
3858 PA PHILADELPHIA INTL AP 39.87 -75.23

129

0

250

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
dist.lakes

S
H

A
P

 v
al

ue

N

−2e+05

0e+00

2e+05

The strongly positive contributions of distance to lakes are all far from the
lakes and increase with negative Northing; these are mostly in New Jersey.

10.8 Extended vs. base model

Is the extended random forst model (with more covariates) more successful
than the base model (using only Northing and elevation) in modelling the
growing degree days?

Task 106 : Compute and display the difference between the 9-predictor and
2-predictor maps. •
summary(dem.ne.m.df$diff.rf.9.3 <-

dem.ne.m.df$pred.rf.ext - dem.ne.m.df$pred.rf)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-413.097 -72.057 -8.703 1.956 61.509 694.914

display.difference.map("diff.rf.9.3",
"Difference RF 9 and RF 3 predictors",
"+/- GDD50")

130

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

+/− GDD50

−250

0

250

500

Difference RF 9 and RF 3 predictors

The largest differences are outside the study area, mostly (?) due to distance
from the Great Lakes. Within it, small negative adjustments on Long Island,
but also near Lake Ontario (not correct).

11 Thin-plate spline interpolation

A quick way to see the distribution of a variable in space as a surface is with
an empirical method that adjusts locally to the data. A common empirical
method is thin-plate splines (TPS), also referred to as “minimum curvature”,
which are implemented in the fields package.

11.1 * Theory

Hastie et al. [7, §5.7] explains the mathematics of multi-dimensional smooth-
ing splines. A more thorough mathematical treatment is given by Wood [28]
and Mitasova and Mitas [17]; these are developments from the “minimum
curvature” methods of Briggs [3]. Applications include Hutchinson [9] and
Mitasova and Hofierka [16].

TPS is the mathematical equivalent of a thin (so, flexible) plate that is
warped to fit the data. This can range from very “rigid”, i.e., just a sin-
gle surface (the usual least-squares plane of a first-order trend surface) to
very “flexible”, i.e., perfectly fitting every observation. In general we want
something in between: if we think there is an overall surface we just fit it as
one polynomial (first, second …order polynomials on the coördinates), but
if we want to fit more locally, we must expect local noise which should be
somehow locally averaged-out.

Fitting a TPS depends on the 𝑘 data points with known coördinates and
attribute values. They can be described by 2(𝑘 +3) parameters, six of which

131

are overall affine transformation parameters (to center the function in 2D)
and 2𝑘 of which link to the control points.

The general method is to minimize the residual sum of squares (RSS) of
the fitted function, subject to a constraint that the function be “smooth” in
some sense; this is expressed by a roughness penalty which balances the fit
to the observations with smoothness. This is a minimization problem. If xi
is one point in 2D space (i.e., it has two coördinates) and 𝑦𝑖 is the attribute
value at the same points, the aim is to minimize:

min
𝑓

𝑁∑
𝑖=1

{𝑦𝑖 − 𝑓 (xi)}2 + 𝜆𝐽 [𝑓] (23)

where 𝐽 is the penalty function and 𝜆 controls how important it is; 𝜆 = 0
means there is no roughness penalty and the data will be fit exactly; as
𝜆 → 𝜔 the solution approximates the least-squares plane, i.e., the trend
surface averaged over all the points.

In 2D an appropriate penalty is:

𝐽 [𝑓] =
∫
R

∫
R


(
𝜕2 𝑓 (x)
𝜕𝑥21

)2
+ 2

(
𝜕2 𝑓 (x)
𝜕𝑥1𝜕𝑥2

)2
+

(
𝜕2 𝑓 (x)
𝜕𝑥22

)2 d𝑥1d𝑥2 (24)

where (𝑥1, 𝑥2) are the two coördinates of the vector x. In practice the double
integral is discretized over some grid known as knots; these may be defined
by the observations or may be a different set, maybe an evenly-spaced grid.

This penalty can be interpreted as the “bending energy” of a thin plate repre-
sented by the function 𝑓 (𝑥); by minimizing this energy the spline function in
over the 2D plane is a thin (flexible) plate which, according to the first term
of Equation 23 would be forced to pass through data points, with minimum
bending. However the second term of Equation 23 allows some smoothing:
the plate does not have to bend so much, since it is allowed to pass “close
to” but not necessarily through the data points. The higher the 𝜆, the less
exact is the fit. This has two purposes: (1) it allows for measurement error;
the data points are not taken as exact; (2) it results in a smoother surface.
So cross-validation is used to determine the degree of smoothness.

The solution to Equation 24 is a linear function:

𝑓 (x) = 𝛽0 + 𝛽𝑇x +
𝑁∑
𝑗=1

𝛼 𝑗ℎ 𝑗 (x) (25)

where the 𝛽 account for the overall trend and the 𝛼 are the coefficients of
the warping.

The set of functions ℎ 𝑗 (x) is the basis kernel, also called a radial basis
function (RBF), for thin-plate splines:

ℎ 𝑗 (x) = ∥x − x 𝑗 ∥2 log ∥x − x 𝑗 ∥ (26)

132

where the norm distance 𝑟 = ∥x − x 𝑗 ∥ is also called the radius of the basis
function. The norm is usually the Euclidean (straight-line) distance.

11.2 Practice

Here we only uses the Northing and Easting as predictors.

Task 107 : Set up for thin-plate splines and compute the minimum-
curvature spline, subject to roughness constraint determined by generalized
cross-validation. •

The Tps function of the fields package compute this; however the coörd-
inates must be formatted as a matrix field in the dataframe, using the matrix
function.
require(fields)
ne.tps <- ne.df
ne.tps$coords <- matrix(c(ne.df$E, ne.df$N), byrow=F, ncol=2)
surf.1 <-Tps(ne.tps$coords, ne.tps$ANN_GDD50)
class(surf.1)

[1] "Krig" "Tps"

summary(surf.1)

CALL:
Tps(x = ne.tps$coords, Y = ne.tps$ANN_GDD50)
##
Number of Observations: 305
Number of unique points: 305
Number of parameters in the null space 3
Parameters for fixed spatial drift 3
Effective degrees of freedom: 88.5
Residual degrees of freedom: 216.5
MLE tau 220.7
GCV tau 228.6
MLE sigma 129700000
Scale passed for covariance (sigma) <NA>
Scale passed for nugget (tau^2) <NA>
Smoothing parameter lambda 0.0003755
##
Residual Summary:
min 1st Q median 3rd Q max
-882.40000 -113.60000 -0.01774 127.30000 574.90000
##
Covariance Model: Rad.cov
Names of non-default covariance arguments:
p
##
DETAILS ON SMOOTHING PARAMETER:
Method used: GCV Cost: 1
lambda trA GCV GCV.one GCV.model tauHat
3.755e-04 8.846e+01 7.359e+04 7.359e+04 NA 2.286e+02
##
Summary of all estimates found for lambda
lambda trA GCV tauHat -lnLike Prof converge
GCV 0.0003755 88.46 73587 228.6 2149 13
GCV.model NA NA NA NA NA NA
GCV.one 0.0003755 88.46 73587 228.6 NA 13
RMSE NA NA NA NA NA NA
pure error NA NA NA NA NA NA
REML 0.0009690 59.35 74532 245.0 2146 7

133

Task 108 : Set up a grid covering the four States at approximately 6 x 6 km
resolution, and convert to a dataframe with the coördinates as a matrix field.
This last is because the fields package works with coördinate matrices. •

The spsample function of the sp package can make various sampling plans,
including a regular grid, within a study area.

We compute the approximate area of the four states, in km, from its bound-
ing box in the US Census state shapefile; these are in m2, and so must be
converted to km2. We then ask for a grid with each cell covering about
(9 km)2.

Note: Recall, this is not for exact prediction, just to get an overview of the
regional distribution of the variable of interest.

resolution <- 9
st_bbox(state.ne.m)

xmin ymin xmax ymax
-387135.2 -396311.1 357707.2 288684.4

(ne.sq.km <- diff(st_bbox(state.ne.m)[c(1,3)]) * diff(st_bbox(state.ne.m)[c(2,4)])/10^6)

xmax
510213.8

(approx.n.grid.cells <- ceiling(ne.sq.km/(resolution^2)))

xmax
6299

states.grid <- st_sample(state.ne.m, size = approx.n.grid.cells, type="regular")
class(states.grid)

[1] "sfc_POINT" "sfc"

states.grid.df <- as.data.frame(states.grid)
states.grid.df$coords <- as.matrix(st_coordinates(states.grid))
str(states.grid.df)

'data.frame': 6285 obs. of 2 variables:
$ geometry:sfc_POINT of length 6285; first list element: 'XY' num 94145 -390279
$ coords : num [1:6285, 1:2] 94145 100922 94145 100922 100922 ...
..- attr(*, "dimnames")=List of 2
.. ..$: NULL
.. ..$: chr [1:2] "X" "Y"

Task 109 : Predict over the four-states grid using the fitted thin-plate
spline. •

The predict.Krig method of the fields package computes the prediction
as a matrix.
surf.1.pred <- predict.Krig(surf.1, states.grid.df$coords)
class(surf.1.pred)

[1] "matrix" "array"

dim(surf.1.pred)

[1] 6285 1

134

summary(as.vector(surf.1.pred))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1460 2058 2288 2389 2680 3695

Task 110 : Display the gridded prediction. •
plot(states.grid.df$coords, pch=20, asp=1, cex=.6,

col=sp::bpy.colors(256)[cut(surf.1.pred, 256)],
xlab="E", ylab="N",
main="Annual GDD50")

plot(state.ne.m.boundary, add = TRUE, col = "darkgray")

−4e+05 −2e+05 0e+00 2e+05 4e+05

−
4e

+
05

−
2e

+
05

0e
+

00
2e

+
05

Annual GDD50

E

N

This map captures the main features of the annual GDD50 fairly well, even
though elevation was not used in the thin-plate spline empirical model. In
particular, it captures the high-GDD areas along the Lake Ontario and Lake
Erie plains, the low-GDD cold spots in the Adirondack, Catskill and Green
Mountains, as well as in the Allegheny State Park area of SW NY/NE PA,
and the very high GDD-area around the Delaware Bay. It does not account
for local variations in GDD because of elevation.

Note: It is also possible to include the elevation in the thin-plate spline
model, but but because it varies at such short ranges, the result is nonsense.

135

To determine the predicted value at any location, just predict at that point.

To make the target point as a sfc_POINT we first create the point geome-
try with st_point and then make it a spatial object with Simple Features
geometry with the st_sfcethod. And of course we need to specify its CRS.
Since we first specify geographic coördinates, we then transform to the CRS
used in the grid.
pt <- st_sfc(st_point(x=c(-76.402175, 42.453271)))
st_crs(pt) <- 4326
pt <- st_transform(pt, st_crs(states.grid))
st_coordinates(pt)

X Y
[1,] -33055.67 -5118.213

(pt.pred <- surf.1.pred <- predict.Krig(surf.1, st_coordinates(pt)))

[,1]
[1,] 2205.347

The thin-plate spline interpolation predicts 2205 annual GDD50 for this
location.

12 Local interpolators

A purely local approach to prediction is to ignore any causative factors (in
this case, northing and elevation) and just use “nearby” known observations
to predict at any location. This is an operational realization of the well-
known Tober’s First Law of Geography: “everything is related to everything
else, but near things are more related than distant things” [23]23. In the
current case this is not advisable, because of the strong and useful relation
of the target variable ANN_GDD50 with the covariables, which we have seen
in earlier sections. However, for completeness we illustrate this method.

Local approaches can be model-based or model-free.

The best-known model-based method is Ordinary Kriging, which relies on
a model of local spatial dependence of the target variable. In this case the
universal model of spatial distribution shown in 1 is simplified to:

𝑍 (s) = 𝜀(s) + 𝜀′(s) (27)

(s) : a location in space, designated by a vector of coördinates;

𝑍 (s) : true (unknown) value of some property at the location;

• when modelled, expressed as most likely value and some uncer-
tainty, or as a probability distribution

𝜀(s) : locally spatially-autocorrelated stochastic component;

𝜀′(s) : pure (“white”) noise, no structure.

In the purely local model there is no deterministic component, i.e., global
coördinates or covariables.
23 Tobler goes on to point out that “the …model used is thus very parochial, and ignores

most of the world”

136

We model 𝜀(s) with an authorized model of spatial dependence, usually
with an authorized variogram model. This model is then used in Ordinary
Kriging (OK). This also reveals the magnitude of 𝜀′(s), i.e., the pure noise
that can not be modelled nor predicted.

Good explanations of Ordinary Kriging are from Webster and Oliver [24]
and Goovaerts [6].

12.1 Computing the empirical variogram

The definition of the empirical variogram was explained in §4.4.1. Here we
apply it to the original values, not the trend residuals as in that section.

Task 111 : Display an empirical variogram to 400 km maximum separation.
•

We use the variogram function of the gstat package. The default bin
width for this function is 1/15 the cutoff. By default the cutoff is 1/3 of the
diagonal across the bounding box of the point-set. These are both ‘rules of
thumb’ and should be adjusted by the analyst until (1) the range of spatial
dependence (if any) is found; (2) each bin has enough point-pairs; (3) the
structure is clear.

First with the defaults. The cutoff is then 3.21841 × 105 km, and the bin
widths about 2.1456 × 104 km.
library(gstat)
st_bbox(ne.m)

xmin ymin xmax ymax
-375745.2 -393922.9 318960.4 276614.1

(cutoff.default <- (sqrt(diff(st_bbox(ne.m)[c(1,3)])^2 +
diff(st_bbox(ne.m)[c(2,4)])^2))/3)

xmax
321841.2

(binwidth.default <- cutoff.default/15)

xmax
21456.08

plot(v.o <- variogram(ANN_GDD50 ~ 1, locations=ne.m),
plot.numbers=TRUE)

137

distance
se

m
iv

ar
ia

nc
e

1e+05

2e+05

3e+05

50000 100000 150000 200000 250000 300000

156

686
1049

1299

1493

1707

1829

1894 1983
2085

2115

2124

2197 2174

2184

Within this range the variogram is unbounded, which means the maximum
variation has not been reached even between observations at the largest
separations. This is because of the strong regional effect of Northing.

Note: Notice the fairly large nugget variance. In the residual variogram
used in KED and RK there was no nugget. How can this be explained?

Extend the cutoff to see if we can find a bound:
plot(v.o <- variogram(ANN_GDD50 ~ 1, locations=ne.m, cutoff=500000, width=20000),

plot.numbers=TRUE)

distance

se
m

iv
ar

ia
nc

e

1e+05

2e+05

3e+05

4e+05

1e+05 2e+05 3e+05 4e+05

119

600
930

1172
1330

1525
1625

17441810
19141896

2003

2020

20492012

20342054

1970
1939

19621797
17661574

14141243

Here we finally do get a bound, at about 430 km. There appears to be
two structures: one to about 180 km and one to about 430 km. Since OK
is a local predictor, and the nearer points receive most of the weight, this
short-range variation is what we want to model for local prediction.

Task 112 : Recompute and display the empirical variogram to 220 km
cutoff. •
v.o <- variogram(ANN_GDD50 ~ 1, locations=ne.m,

cutoff=220000)
plot(v.o, plot.numbers=TRUE)

138

distance
se

m
iv

ar
ia

nc
e

50000

100000

150000

200000

250000

50000 100000 150000 200000

55

310
519

703

829

907

1033

1084

1199

1231
1300

1333
1363 1427

1372

12.2 Fitting an authorized variogram model

We require a continuous function of semivariance vs. separation, so that for
any separation we can compute the semivariance to be used in the kriging
equations. This must be an authorized variogram model that ensures that
the kriging system will be postive semi-definite and thus invertible.

This empirical variogram can be well-modelled with a spherical variogram
model; at short ranges this is almost linear. The nugget appears to be about
40 000 GDD2, the partial sill at the maximum semivariance of about 250 000
GDD2 less the nugget, and the range can be approximated by the maximum
separation.

The fit.variogram function fits variogram models specified with the vgm
“variogram model” function. We initialize the weighted least-squares (WLS)
fit to the empirical variogram with our eyeball estimates.
(vmf.o <- fit.variogram(v.o,

vgm(psill=210000, model="Sph",
range=220000, nugget=40000)))

model psill range
1 Nug 41816.39 0.0
2 Sph 232353.41 297706.6

plot(v.o, plot.numbers=TRUE, model=vmf.o)

distance

se
m

iv
ar

ia
nc

e

50000

100000

150000

200000

250000

50000 100000 150000 200000

55

310
519

703

829

907

1033

1084

1199

1231
1300

1333
1363 1427

1372

This fits fairly well; our original estimates were not too far off. The range is

139

fitted to be about 35% longer than our estimate.

12.3 Predicting by Ordinary Kriging

Once we have the fitted model and the data points, we can predict at any
location, by solving the OK system (§7.1) for the weights 𝜆𝑖 to be used in
the weighted average (Eqn. 14). The mathematics of OK were presented in
(§7.1).

Task 113 : Predict over this grid with OK. •

For Ordinary Kriging, we can use stations that we know are in the “local”
region, for example the nearest “few” stations, or we can use all points
within the range of the empirical variogram. The latter will have a strong
averaging effect; the former will show artefacts where some stations come
into or leave the range from a prediction point. Theoretically we should use
all the stations; but if we have reason to suspect first-order non-stationarity,
we may prefer to just use the closest stations.

For the local OK we specify the optional nmax to use only the twenty-four
closest stations.

We also specify the optional block argument, to average the prediction over
a 1 km2 block.
dem.ne.m.sp was set up in \S6.2 "Adjusting the grid for prediction"
k.ok <- krige(ANN_GDD50 ~ 1, locations=ne.m, newdata=dem.ne.m.sf,

model=vmf.o, nmax=24, block=c(1000,1000))

[using ordinary kriging]

summary(k.ok)

var1.pred var1.var geometry
Min. :1483 Min. : 12201 POINT :40052
1st Qu.:2189 1st Qu.: 28249 epsg:NA : 0
Median :2534 Median : 37303 +proj=aea ...: 0
Mean :2548 Mean : 76574
3rd Qu.:2845 3rd Qu.:105569
Max. :3740 Max. :337793

Task 114 : List the 24 stations that were used for the local prediction at
the block containing the Ithaca weather station, in order of their separations
from Ithaca. •
e.ith.pt <- subset(ne.m, (ne.m$STATION_NA=="ITHACA CORNELL UNIV"))
dist.pt <- st_distance(ne.m, e.ith.pt)
(ix <- order(dist.pt)[1:24])

[1] 100 148 72 49 154 54 81 167 82 48 133 85 119 40 53 128
[17] 271 152 62 241 145 51 76 147

print(cbind(ne.df[ix,c('STN_NAME','STATE','ELEVATION_','ANN_GDD50')],
dist=round(dist.pt[ix,]/1000,1)))

STN_NAME STATE ELEVATION_ ANN_GDD50 dist
3074 ITHACA CORNELL UNIV NY 960 2160 0.0 [m]
3122 SPENCER 2 N NY 1050 1988 22.6 [m]
3046 CORTLAND NY 1129 2329 27.7 [m]

140

3023 AURORA RESEARCH FARM NY 830 2590 35.2 [m]
3128 TULLY HEIBERG FOREST NY 1899 1746 46.8 [m]
3028 BINGHAMTON BROOME CO AP NY 1600 2141 47.7 [m]
3055 ELMIRA NY 844 2395 48.4 [m]
3141 WAVERLY NY 845 2304 50.5 [m]
3056 ENDICOTT NY 827 2245 51.2 [m]
3022 AUBURN NY 744 2352 52.9 [m]
3107 PENN YAN NY 830 2430 55.0 [m]
3059 GENEVA RESEARCH FARM NY 718 2396 67.4 [m]
3093 MORRISVILLE 6 SW NY 1300 1818 72.6 [m]
3014 ADDISON NY 980 2123 74.0 [m]
3027 BATH NY 1120 2055 74.9 [m]
3102 NORWICH NY 1020 2203 76.1 [m]
3881 TOWANDA 1 ESE PA 750 2447 77.8 [m]
3126 SYRACUSE HANCOCK INTL AP NY 410 2467 79.8 [m]
3036 CANANDAIGUA 3 S NY 720 2531 81.3 [m]
3851 MONTROSE PA 1420 2064 81.3 [m]
3119 SHERBURNE 2 S NY 1080 2157 82.7 [m]
3025 BAINBRIDGE 2 E NY 994 2063 84.4 [m]
3050 DEPOSIT NY 1000 2245 94.1 [m]
3121 SODUS CENTER NY 420 2558 95.5 [m]

Notice the wide range of elevations in this group of stations, from 410’ to
almost 1900’.

Task 115 : Display a map of the ANN_GDD50 predicted by OK. •
ggplot(k.ok) +

geom_sf(aes(col=var1.pred))

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

var1.pred

1500

2000

2500

3000

3500

For comparison with the maps made with other techniques, we also add the
results to the data.frame covering the same area and then display it with
ggplot:
dim(dem.ne.m.df)

[1] 40052 32

dem.ne.m.df$pred.ok <- k.ok$var1.pred
display.prediction.map("pred.ok",

141

"Annual GDD base 50F, OK prediction",
"GDD50")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD base 50F, OK prediction

We see this is much smoother than other methods, mainly because it does
not take elevation into account.

12.3.1 Accuracy assessment

An advantage of OK is that it gives a direct estimate of its prediction vari-
ance at each prediction location – this is because the variance must be min-
imized, so it must be computed.

Task 116 : Display a map of the OK prediction standard deviations. •
dem.ne.m.df$sd.ok <- sqrt(k.ok$var1.var)
ggplot() +

geom_point(aes(x=E, y=N, colour=sd.ok), data=dem.ne.m.df) +
xlab("E") + ylab("N") + coord_fixed() +
ggtitle("Annual GDD base 50F, Standard error of OK prediction") +
scale_colour_distiller(name="GDD50 s.d.", space="Lab", palette="RdYlGn",

direction=-1)

142

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50 s.d.

200

300

400

500

Annual GDD base 50F, Standard error of OK prediction

Clearly, the further from local information, the more the prediction is un-
certain, e.g., northwest of Lake Ontario. The prediction uncertainty is least
near stations, especially near a cluster of stations, e.g., the NYC area. We
could choose to not predict at areas with too much uncertainty, based on
user requirements.

The minimum and mean prediction standard deviations:
summary(dem.ne.m.df$sd.ok)

Min. 1st Qu. Median Mean 3rd Qu. Max.
110.5 168.1 193.1 252.0 324.9 581.2

ix <- which.min(dem.ne.m.df$sd.ok)
k.ok[ix,"var1.pred"]

Simple feature collection with 1 feature and 1 field
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 164275.7 ymin: -193434.4 xmax: 164275.7 ymax: -193434.4
Projected CRS: +proj=aea +lat_0=42.5 +lat_1=39
+lat_2=44 +lon_0=-76 +ellps=WGS84 +units=m
var1.pred geometry
27807 3415.665 POINT (164275.7 -193434.4)

round(100*dem.ne.m.df[ix,"sd.ok"]/k.ok$var1.pred[ix],1)

[1] 3.2

The minimum is quite small, only about 3% of the prediction at that point,
and the mean is only about 2.5 times as poor.

A better way to evaluate the predictive power OK is by Leave-one-out cross-
validation (LOOCV). Here each point is removed from the dataset in turn,
and predicted by the others, using the fitted variogram model. If the obser-

143

vation points well represent the total population, as they do here by design
of the weather station network, this gives a good estimate of the prediction
error.

Task 117 : Compute and summarize the LOOCV for this OK prediction. •

The krige.cv function of the gstat package computes this:
kcv.ok <- krige.cv(ANN_GDD50 ~ 1, locations=ne.m, model=vmf.o)
summary(kcv.ok$residual)

Overall the results are fairly good, but there are some extremely bad pre-
dictions. An overall measure is the root of the mean squared error, RMSE:
(loocv.ok.rmse <- sqrt(sum(kcv.ok$residual^2)/length(kcv.ok$residual)))

[1] 268.1796

Task 118 : Display a bubble plot of the LOOCV residuals. •
bubble.sf("kcv.ok", "residual", "GDD50", "LOOCV OK residuals")

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− GDD50

300

600

900

−, overprediction

+, underprediction

LOOCV OK residuals

There are several regions with intermixed fairly large under- and over-
predictions; this means that in these regions there are local factors, most
notable elevation.

Task 119 : Find the worst predictions, try to explain in geographic terms.
•

ne.m[which.min(kcv.ok$residual),2:6]

Simple feature collection with 1 feature and 5 fields
Geometry type: POINT
Dimension: XY

144

Bounding box: xmin: 252835.5 ymin: 230248.4 xmax: 252835.5 ymax: 230248.4
Projected CRS: +proj=aea +lat_0=42.5 +lat_1=39
+lat_2=44 +lon_0=-76 +ellps=WGS84 +units=m
STATE STATION_NA LATITUDE_D LONGITUDE_ ELEVATION_
4716 VT MOUNT MANSFIELD 44.53 -72.82 3950
geometry
4716 POINT (252835.5 230248.4)

ne.m[which.max(kcv.ok$residual),2:6]

Simple feature collection with 1 feature and 5 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 22581.52 ymin: -130037 xmax: 22581.52 ymax: -130037
Projected CRS: +proj=aea +lat_0=42.5 +lat_1=39
+lat_2=44 +lon_0=-76 +ellps=WGS84 +units=m
STATE STATION_NA LATITUDE_D LONGITUDE_ ELEVATION_
3888 PA WILKES BRE SCTN AP AVOCA 41.33 -75.73 930
geometry
3888 POINT (22581.52 -130037)

The largest under-predictions (i.e., most negative LOOCV residual) is Mt.
Mansfield (VT). This station is the only one on the higher parts of the
Green Mountains, and is geographically near to Lake Champlain to its west.
The largest over-prediction is the AVP (Wilkes-Barre/Scranton) airport in
Avoca, near Wilkes-Barre (PA). This station is on an exposed plateau above
the nearby Lackawanna Valley stations.

Challenge: Find the optimal local neighbourhood for OK by testing several
numbers of nearest neighbours and/or maximum distance, and comparing
their cross-validation statistics.

Challenge: Much of the LOOCV errors from OK could be because local
elevation is not taken into account. There can be a substantial elevation
variation within the nearest 24 stations. Apply KED (§8) with elevation
(or its square root) as the covariable and see how much this improves the
LOOCV error.

12.4 Inverse-distance interpolation

In case a model of spatial dependence can not be built, a fallback is a model-
free empirical interpolation. There are many such, none of which have any
theoretical basis, but which can be tested by cross-validation:

• inverse distance weighting, to some power (generally one or two);

• average of observations within some radius;

• average of some number of nearest observations.

The krige function with a null model computes inverse-distance interpola-
tion; another way is with the convenience function idw function, which has
an optional idp “inverse distance power” argument gives the decay power;
the default is two, i.e., quadratic decay. Since there is no model, and hence
no optimization of the prediction variance, there is here no internal estimate
of uncertainty.

145

k.idw <- idw(ANN_GDD50 ~ 1, locations=ne.m, newdata=dem.ne.m.sf,
idp=2, nmax=24)

[inverse distance weighted interpolation]

summary(k.idw$var1.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
851.8 2158.9 2418.0 2527.0 2888.9 4013.0

summary(k.ok$var1.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1483 2189 2534 2548 2845 3740

Plot the result:
dem.ne.m.df$pred.idw <- k.idw$var1.pred
display.prediction.map("pred.idw",

"Annual GDD base 50F, IDW2 prediction",
"GDD50")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

1000

2000

3000

4000

Annual GDD base 50F, IDW2 prediction

LOOCV also can be applied to IDW:
kcv.idw <- krige.cv(ANN_GDD50 ~ 1, locations=ne.m, model=NULL)

summary(kcv.idw$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1183.393 -204.227 -2.284 -23.102 176.446 745.680

summary(kcv.ok$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1126.6606 -154.4425 -2.0428 -0.8718 176.5507 813.0746

(loocv.idw.rmse <- sqrt(sum(kcv.idw$residual^2)/length(kcv.idw$residual)))

146

[1] 300.457

(loocv.ok.rmse)

[1] 268.1796

The OK cross-validation is somewhat better than that from IDW, which
makes sense, because of the fitted model of spatial dependence used in OK,
vs. the ad hoc inverse-distance model.

Task 120 : Display a bubble plot of the LOOCV residuals. •
bubble.sf("kcv.idw", "residual", "GDD50", "IDW^2 LOOCV residuals")

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− GDD50

300

600

900

−, overprediction

+, underprediction

IDW^2 LOOCV residuals

These show much stronger residual spatial structure than do the OK resid-
uals.

Challenge: Find the optimal power for IDW by testing several inverse-
distance powers, and comparing their cross-validation statistics.

12.5 Thiessen polygons

The simplest way to predict a variable at one position is to use the value
of that variable at the nearest neighbour in geographic space. For climate
variables with a fairly dense network, as in this example, this is a common
procedure: look at the climate record for the nearest station and consider
that the local climate can not differ “too much”.

A spatial expression of this is to divide the prediction area into Thiessen
polygons24, where each location is in a polygon whose centroid is its nearest
neighbour. The advantage of this approach is that it requires no statistical
24 also known as a Voronoi tessellation or a Dirichlet tessellation

147

model; in particular, there is no assumption of second-order stationarity as
required by kriging.

Task 121 : Compute and display the Thiessen polygons over the study area.
•

The computation is with the voronoi “Voronoi tesselation” function of the
sf package. The optional bnd argument specifies the bounding box for the
tesselation. We use the bounding box of the four States, converted to a
SpatVector.
v <- terra::voronoi(vect(ne.m), bnd=vect(state.ne.m))
class(v)

[1] "SpatVector"
attr(,"package")
[1] "terra"

plot(v)

−4e+05 −3e+05 −2e+05 −1e+05 0 1e+05 2e+05 3e+05

−
4e

+
05

−
3e

+
05

−
2e

+
05

−
1e

+
05

0
1e

+
05

2e
+

05
3e

+
05

The Voronoi polygons extend to the boundary of the bounding box.

Task 122 : Clip the tesselation to the four states. •

For this we use the crop method with two SpatVect objects.
v <- crop(v, vect(state.ne.m))
plot(v)

148

−4e+05 −3e+05 −2e+05 −1e+05 0 1e+05 2e+05 3e+05

−
4e

+
05

−
3e

+
05

−
2e

+
05

−
1e

+
05

0
1e

+
05

2e
+

05
3e

+
05

This map now can be used for prediction. Simply, the entire area of each
polygon is predicted with the value from the nearest station, i.e., its centroid.

Task 123 : Predict GDD50 over the study area by assigning the GDD50
from the centroid weather station to the entire polygon. •

The st_join “spatial join” method of the sf package queries its second
argument (layer from which attributes are queries) and assigns attribute
values to the geometries in the first argument. In this case each polygon
covers an area; within that area is only one climate station in the sf object
ne.m, so the value of the attributes at that point will be assigned to the
polygon.

Note: For overlays where several points are in the same polygon, a user-
specified function must be applied to return a single value.

class(v); dim(v)

[1] "SpatVector"
attr(,"package")
[1] "terra"
[1] 305 39

convert from SpatVector to sf
v.sf <- st_as_sf(v)
summary(v.sf$geometry)

MULTIPOLYGON POLYGON epsg:NA +proj=aea ...

149

12 293 0 0

plot(v.sf["STATE"], main="Thiessen polygons assigned to each State")
spatial join
v3 <- st_join(v.sf, ne.m)
class(v3)

[1] "sf" "data.frame"

NJ

NY

PA

VT

Thiessen polygons assigned to each State

Task 124 : Plot the Thiessen polygons with their predicted values. •
ggplot(v3) +

geom_sf(aes(bg = ANN_GDD50.y)) +
labs(bg = "Annual GDD50", title = "Thiessen polygon prediction")

150

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

Annual GDD50

1000

2000

3000

4000

Thiessen polygon prediction

To determine the predicted value at any location, just predict at that point.

To make the target point as a sfc_POINT we first create the point geometry
with st_point and then make it a spatial object with Simple Features ge-
ometry with the st_sfc method. And of course we need to specify its CRS.
We first specify the point location using geographic coördinates, and then
we then transform to the CRS used in the grid. For illustration, we use the
geocode_OSM function of the tmaptools package to retrieve the coördinates
of a known address from the Open Street Map Nominatim database. Here
we choose Cornell University’s Musgrave Research Farm.
an arbitrary point of interest
require(tmaptools)
(query.pt <- geocode_OSM("1256 Poplar Ridge Rd, Aurora, NY 13026"))

$query
[1] "1256 Poplar Ridge Rd, Aurora, NY 13026"
##
$coords
x y
-76.65689 42.73498
##
$bbox
xmin ymin xmax ymax
-76.65694 42.73493 -76.65684 42.73503

require(sf)
(pt <- st_sfc(st_point(query.pt$coords)))

151

Geometry set for 1 feature
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -76.65689 ymin: 42.73498 xmax: -76.65689 ymax: 42.73498
CRS: NA

POINT (-76.65689 42.73498)

class(pt)

[1] "sfc_POINT" "sfc"

pt <- st_sfc(st_point(x=c(-76.65689, 42.73498)))
st_crs(pt) <- 4326
pt <- st_transform(pt, st_crs(states.grid))
st_coordinates(pt)

X Y
[1,] -53753.43 26326.6

pt <- st_as_sf(pt)
class(pt)

[1] "sf" "data.frame"

Now predict at that point by a spatial join:
class(pt)

[1] "sf" "data.frame"

class(v3)

[1] "sf" "data.frame"

pt.pred <- st_join(pt, v3)
print(pt.pred["ANN_GDD50.y"])

Simple feature collection with 1 feature and 1 field
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -53753.43 ymin: 26326.6 xmax: -53753.43 ymax: 26326.6
Projected CRS: +proj=aea +lat_0=42.5 +lat_1=39
+lat_2=44 +lon_0=-76 +ellps=WGS84 +units=m
ANN_GDD50.y x
1 2590 POINT (-53753.43 26326.6)

The Thiessen polygon interpolation predicts 2590 annual GDD50 for this
location.

12.5.1 Accuracy assessment

How accurate is a Thiessen polygon map? Ideally we would have a randomly-
distributed sample of independent evaluation stations, but since we do not,
we can apply the Thiessen polygon version of Leave-One-Out cross-validation
(LOOCV). This is simply finding the nearest neighbour of each known sta-
tion, and predicting at the known station from its neighbour.

Task 125 : Build a matrix of inter-station distances. •

This can be done with the st_distance‘spatial distances” function of the
sf package.

152

dm <- st_distance(ne.m)
str(dm)

Units: [m] num [1:305, 1:305] 0 14343 64767 34083 159361 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:305] "1" "2" "3" "4" ...
..$: chr [1:305] "1" "2" "3" "4" ...

Task 126 : Find the nearest neighbour of each station, i.e., the one at closest
distance. •

We use the apply function to apply the which.min “which minimum?” func-
tion across the rows of the distance matrix. However, all the diagonals are
zero (distance between a station and itself), so we first have to put a large
distance on diagonal so the stations themselves won’t come out as minima.
diag(dm) <- max(dm)*1.1
nn <- apply(dm, 1, which.min)
str(nn)

Named int [1:305] 2 1 248 24 267 26 11 4 38 31 ...
- attr(*, "names")= chr [1:305] "1" "2" "3" "4" ...

This gives the index of each station’s nearest neighbour. For example, station
1’s nearest neighbour is station 2, and vice-versa.

Task 127 : Predict each station from its nearest neighbour, and plot the
regional predictions. •
nn.gdd <- ne.m[nn,"ANN_GDD50"]
str(nn.gdd)

Classes 'sf' and 'data.frame': 305 obs. of 2 variables:
$ ANN_GDD50: num 3534 3310 3834 3553 2652 ...
$ geometry :sfc_POINT of length 305; first list element: 'XY' num 135231 -345526
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA
..- attr(*, "names")= chr "ANN_GDD50"

Task 128 : Compare to the actual value and compute evaluation statistics.
•

obs <- ne.m[,"ANN_GDD50"]
summary(diff <- st_drop_geometry(obs - nn.gdd))

ANN_GDD50 geometry
Min. :-914.000 POINT :305
1st Qu.:-193.000 epsg:NA: 0
Median : -9.000
Mean : -4.393
3rd Qu.: 175.000
Max. : 983.000

hist(diff$ANN_GDD50,
xlab = "Annual GDD50",
main="Cross-validation errors, Thiessen polygons")

rug(diff$ANN_GDD50)
(me <- mean(diff$ANN_GDD50))

[1] -4.393443

153

(rmse <- sqrt(sum(diff$ANN_GDD50^2)/length(diff$ANN_GDD50)))

[1] 332.5643

Cross−validation errors, Thiessen polygons

Annual GDD50

F
re

qu
en

cy

−1000 −500 0 500 1000

0
20

40
60

80

The mean error is close to zero, but the RMSE is quite large, 333 degree-
days.

We can compare these to the evaluation statistics at the same points from
the Random Forest out-of-bag computed above (§10.2.1).
rf.oob.me; rf.oob.rmse

[1] -2.488285
[1] 11.59619

Clearly, the predictions from Thiessen polygons, with this density of climate
stations, are quite poor, compared to the data-driven model using coörd-
inates and elevation.

Task 129 : Plot the LOOCV errors. •
v3$resid.thiessen <- diff$ANN_GDD50
ggplot(v3) +

geom_sf(aes(bg = resid.thiessen)) +
scale_fill_gradient2() +
labs(bg = "Annual GDD50", title = "X-validation error, Thiessen polygon prediction")

154

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

Annual GDD50

−500

0

500

X−validation error, Thiessen polygon prediction

The largest errors are where the topography changes rapidly between sta-
tions, for example at and next to Mt. Mansfield (VT) – these two polygons
have the largest over- and under-predictions, respectively. The smallest er-
rors are where elevations do not change much between neighbour stations,
for example on the Lake Ontario plain.

13 Comparing the spatial patterns of two climate variables

An interesting question for geographers is how the spatial patterns of two
climate variables are related. In the previous part of this exercise we an-
alyzed growing degree days, base 50°F (GDDG50), which is related to the
amount of heat available for crop development.

The source dataset from which the GDD50 records were taken includes other
climate variables as 30-year records over the 1971-2000 time period. These
are all provided as ESRI shapefiles, included in the compressed file
weather_stn_sums_1971_2000.zip.

Task 130 : Locate this file, unpack it in a convenient working directory. •

155

Task 131 : List the shapefiles in this directory. •

The list.files function lists the files to the console output; you can also
look at the directory in a file manager.

• Its first argument is the directory in which to look.

• The optional pattern argument gives a regular expression to match
the file names. Here we just want the base shape files; there are other
“helper” files with the same name but different file extensions, so we
specify a pattern of the shp extension, at the end of the string, as
symbolized by the special $ regular expression character.

If the files are in the directory where you are connected25, you can just
specify ".", which is a Unix and R abbreviation for “the current directory”.
If they are in a subdirectory, you need to name that, using the forward slash
"/" character to show you are descending the directory tree.

List the unpacked files:
list.files(".", pattern=".shp$")

[1] "extmin_7100j.shp" "frz28_7100j.shp" "frz32_7100j.shp"
[4] "gdd40_7100j.shp" "gdd50_7100j.shp" "maat7100.shp"
[7] "map7100.shp"

Each of these shapefiles has associated metadata, with extension .xml which
can be read in several viewers.
list.files(".", pattern=".xml$")

[1] "dem_ne_4km_TRI3_IDW2.sdat.aux.xml"
[2] "extmin_7100j.shp.xml"
[3] "frz28_7100j.shp.xml"
[4] "frz32_7100j.shp.xml"
[5] "gdd40_7100j.shp.xml"
[6] "gdd50_7100j.shp.xml"
[7] "maat7100.shp.xml"
[8] "map7100.shp.xml"
[9] "mrvbf_ne_4km.sdat.aux.xml"

There are several variables related to heat, in the following files:

gdd40_7100j : growing degree days, base 40°F (applies to C3 crops such as spring
wheat and barley)

maat7100 : mean air temperature °F

frz32_7100j : length of frost-free period, consecutive days above 32 °F (for frost-
sensitive crops)

frz28_7100j : length of frost-free period, consecutive days above 28 °F (for frost-
tolerant crops)

extmin_7100j : extreme minimum temperature °F

These all have annual and monthly records, averages over 1971-2000.

In addition, one variable is related to precipitation:
25 use getwd to find this

156

map7100 : mean annual precipitation, inches26.

13.1 Choose a variable to compare with annual GDD50

In this section we see how to compare regional maps to understand the
spatial patterns of these differences.

We choose to compare mean annual temperature, °F, which is an overall
measure of heat over the year, with annual GDD50. Since this is related
to heat, the overall geographic pattern should be similar to annual GDD50,
but there are physical differences between them.

Challenge: It is interesting to compare other variables, either annual or
monthly. To do this, change the following code to substitute another variable
for maat7100. If you use map7100 (precipitation) you may want to convert
inches to cm or mm.

Task 132 : Import the temperature records for the entire USA into a
temporary data frame. •

This is the maat7100 variable.
varname <- "maat7100"
tmp <- st_read(dsn=".", layer=varname,

int64_as_string = FALSE, quiet = TRUE)
head(tmp)

Simple feature collection with 6 features and 19 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -88.13 ymin: 31.3 xmax: -85.82 ymax: 34.8
Geodetic CRS: NAD27
STATION_ID STATE STATION_NA LATITUDE_D LONGITUDE_ ELEVATION_
1 10160 AL ALEXANDER CITY 32.95 -85.95 640
2 10178 AL ALICEVILLE 33.13 -88.13 240
3 10252 AL ANDALUSIA 3 W 31.30 -86.52 250
4 10272 AL ANNISTON METRO AP 33.58 -85.85 594
5 10369 AL ASHLAND 3 SE 33.23 -85.82 1010
6 10395 AL ATHENS 2 34.80 -86.98 720
JAN_TEMP FEB_TEMP MARCH_TEMP APRIL_TEMP MAY_TEMP JUNE_TEMP
1 43.0 46.6 54.3 61.1 68.9 76.0
2 42.7 46.8 55.0 61.6 70.0 77.4
3 48.4 51.5 58.4 64.5 72.1 78.6
4 43.3 47.3 54.9 61.7 69.4 76.6
5 42.7 46.6 53.9 60.9 68.3 75.0
6 38.2 42.1 50.7 59.1 67.5 74.7
JULY_TEMP AUG_TEMP SEP_TEMP OCT_TEMP NOV_TEMP DEC_TEMP ANN_TNORM_
1 79.5 78.6 73.4 62.8 53.7 45.7 62.0
2 80.9 79.8 74.3 63.0 53.3 45.4 62.5
3 81.2 80.7 76.8 66.3 57.7 50.8 65.6
4 80.1 79.5 73.8 62.9 53.4 46.1 62.4
5 78.4 77.7 72.8 62.5 54.0 45.8 61.6
6 78.5 77.6 71.2 59.9 49.9 41.5 59.2
geometry
1 POINT (-85.95 32.95)
2 POINT (-88.13 33.13)
3 POINT (-86.52 31.3)
4 POINT (-85.85 33.58)
5 POINT (-85.82 33.23)
6 POINT (-86.98 34.8)

26 1 inch = 2.54 cm

157

Task 133 : Restrict this dataframe to the the four selected states. •
ix <- (tmp$STATE %in% c("NY","NJ","PA","VT"))
tmp <- tmp[ix,]
names(tmp)

[1] "STATION_ID" "STATE" "STATION_NA" "LATITUDE_D" "LONGITUDE_"
[6] "ELEVATION_" "JAN_TEMP" "FEB_TEMP" "MARCH_TEMP" "APRIL_TEMP"
[11] "MAY_TEMP" "JUNE_TEMP" "JULY_TEMP" "AUG_TEMP" "SEP_TEMP"
[16] "OCT_TEMP" "NOV_TEMP" "DEC_TEMP" "ANN_TNORM_" "geometry"

Task 134 : Transform this frame to to the same metric CRS ne.crs loaded
in §3. •
st_crs(tmp)$proj4string

[1] "+proj=longlat +datum=NAD27 +no_defs"

tmp.m <- st_transform(tmp, ne.crs)
st_crs(tmp.m)$proj4string

[1] "+proj=aea +lat_0=42.5 +lon_0=-76 +lat_1=39 +lat_2=44 +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs"

13.2 Add the variable to compare

Task 135 : Transfer the temperature records to the same object with the
GDD50, and then remove the temporary objects. •

We use the cbind “bind columns” function for this.
names(tmp.m)

[1] "STATION_ID" "STATE" "STATION_NA" "LATITUDE_D" "LONGITUDE_"
[6] "ELEVATION_" "JAN_TEMP" "FEB_TEMP" "MARCH_TEMP" "APRIL_TEMP"
[11] "MAY_TEMP" "JUNE_TEMP" "JULY_TEMP" "AUG_TEMP" "SEP_TEMP"
[16] "OCT_TEMP" "NOV_TEMP" "DEC_TEMP" "ANN_TNORM_" "geometry"

ne.m$ANN_TNORM_ <- tmp.m$ANN_TNORM_
rm(tmp, tmp.m)

Add these coördinates as regular fields, for linear models which use them as
predictors.
ne.coords <- st_coordinates(ne.m)
ne.m <- cbind(ne.m, E = ne.coords[,1], N = ne.coords[, 2])
rm(ne.coords)

13.3 Standardize variables for comparison

To compare two variables on the same scale, it is necessary to standardize
them, by subtracting the mean and dividing by the standard deviation.

Task 136 : Compute standardized versions of the GDD50 and ANN_TNORM_
fields. •
summary(ne.m$ANN_GDD50)

Min. 1st Qu. Median Mean 3rd Qu. Max.

158

795 2100 2463 2518 2930 4021

summary(ne.m$ANN_TNORM_)

Min. 1st Qu. Median Mean 3rd Qu. Max.
34.70 45.20 47.80 48.03 51.00 56.30

gdd50.std <- (ne.m$ANN_GDD50 - mean(ne.m$ANN_GDD50))/sd(ne.m$ANN_GDD50)
t.ann.std <- (ne.m$ANN_TNORM_ - mean(ne.m$ANN_TNORM_))/sd(ne.m$ANN_TNORM_)
summary(gdd50.std)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.00125 -0.72747 -0.09499 0.00000 0.71869 2.61961

summary(t.ann.std)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.4800 -0.7388 -0.0600 0.0000 0.7754 2.1591

Task 137 : Compare these to see how closely they are correlated. •
cor(ne.m$ANN_GDD50, ne.m$ANN_TNORM_)

[1] 0.9811989

cor(gdd50.std, t.ann.std)

[1] 0.9811989

plot(gdd50.std, t.ann.std, asp=1,
col = ne.m$STATE, pch = 20,
xlab="Standardized annual GDD50",
ylab="Standardized mean annual T")

abline(0,1); grid()

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Standardized annual GDD50

S
ta

nd
ar

di
ze

d
m

ea
n

an
nu

al
 T

Note that the correlation is the same for both the standardized and un-
standardized variables. It’s interesting that the GDD50 are a bit higher
than the mean annual T at both extremes of the 1:1 plot. So they are

159

closely correlated, but not identical.

We choose to use RK-GLS (§7) and Random Forests (§10.2) as the prediction
methods; the other methods could all be used.

13.4 Comparing variables with RK-GLS

Task 138 : Build OLS models of both standardized variables from the two
coördinates and square root of elevation. Compare their adjusted 𝑅2 and
coefficients. •
summary(m.ols.t <- lm(t.ann.std~ sqrt(ELEVATION_)+N+E, data=ne.m))

##
Call:
lm(formula = t.ann.std ~ sqrt(ELEVATION_) + N + E, data = ne.m)
##
Residuals:
Min 1Q Median 3Q Max
-0.6861 -0.1944 -0.0391 0.1842 0.8651
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.096e+00 5.505e-02 19.913 < 2e-16 ***
sqrt(ELEVATION_) -5.321e-02 1.829e-03 -29.088 < 2e-16 ***
N -3.614e-06 1.199e-07 -30.148 < 2e-16 ***
E -9.150e-07 1.134e-07 -8.071 1.68e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.2821 on 301 degrees of freedom
Multiple R-squared: 0.9212,Adjusted R-squared: 0.9204
F-statistic: 1173 on 3 and 301 DF, p-value: < 2.2e-16

summary(m.ols.gdd <- lm(gdd50.std ~ sqrt(ELEVATION_)+N+E, data=ne.m))

##
Call:
lm(formula = gdd50.std ~ sqrt(ELEVATION_) + N + E, data = ne.m)
##
Residuals:
Min 1Q Median 3Q Max
-0.9447 -0.2365 -0.0221 0.2303 1.0474
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.374e+00 6.709e-02 20.483 < 2e-16 ***
sqrt(ELEVATION_) -6.184e-02 2.230e-03 -27.735 < 2e-16 ***
N -2.895e-06 1.461e-07 -19.814 < 2e-16 ***
E -9.386e-07 1.382e-07 -6.793 5.88e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.3439 on 301 degrees of freedom
Multiple R-squared: 0.8829,Adjusted R-squared: 0.8818
F-statistic: 756.6 on 3 and 301 DF, p-value: < 2.2e-16

coef(m.ols.t)

(Intercept) sqrt(ELEVATION_) N E
1.096150e+00 -5.320974e-02 -3.613649e-06 -9.149859e-07

coef(m.ols.gdd)

(Intercept) sqrt(ELEVATION_) N E

160

1.374233e+00 -6.183727e-02 -2.894689e-06 -9.386282e-07

coef(m.ols.t)/coef(m.ols.gdd)

(Intercept) sqrt(ELEVATION_) N E
0.7976448 0.8604801 1.2483723 0.9748119

Q45 : Do the two models explain the same amount of spatial variability by
the same predictors? If the two variables have the same spatial structure,
what should be the ratio of the coefficients? Is that the case here? Jump
to A45 •

Task 139 : Display bubble plots of the residuals, and 1:1 plots of actual vs.
fitted, for both variables. •
summary(ne.m$ols.resid.t <- residuals(m.ols.t))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.6861 -0.1944 -0.0391 0.0000 0.1842 0.8651

summary(ne.m$ols.resid.gdd <- residuals(m.ols.gdd))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.9447 -0.2365 -0.0221 0.0000 0.2303 1.0474

p1 <- bubble.sf("ne.m", "ols.resid.t", "OLS residuals",
"residuals, standardized annual T")

p2 <- bubble.sf("ne.m", "ols.resid.gdd", "xx",
"residuals, standardized annual GDD50")

require(gridExtra)
grid.arrange(p1, p2, ncol = 2)

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− OLS residuals

0.2

0.4

0.6

0.8

−, overprediction

+, underprediction

residuals, standardized annual T

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− xx

0.25

0.50

0.75

1.00

−, overprediction

+, underprediction

residuals, standardized annual GDD50

Task 140 : Compare the residuals with a bubble plot of their differences. •
summary(ne.m$ols.resid.diff <- ne.m$ols.resid.t - ne.m$ols.resid.gdd)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.583312 -0.103252 0.005628 0.000000 0.101299 0.610121

bubble.sf("ne.m", "ols.resid.diff", "difference",
"Difference of residuals, standardized T - standardized GDD")

161

39°N

40°N

41°N

42°N

43°N

44°N

45°N

80°W 78°W 76°W 74°W 72°W

+/− difference

0.2

0.4

0.6

−, overprediction

+, underprediction

Difference of residuals, standardized T − standardized GDD

Now we begin to see the pattern, where the regional trend of annual mean
temperature is higher or lower than that for GDD50.

Q46 : What is the pattern of differences between the residuals from the
models for the two variables? Identify the most interesting areas. What
could be an explanation? Jump to A46 •

Task 141 : Model the residual spatial dependence for both variables, i.e.,
fit variogram models to the OLS residuals, for both variables. •
require(gstat)
v.r.ols.t <- variogram(ols.resid.t ~ 1,

locations=ne.m, cutoff=120000, width=12000)
(vmf.r.ols.t <- fit.variogram(v.r.ols.t,

vgm(psill=0.1, model="Exp",
range=20000, nugget=0.02)))

model psill range
1 Nug 0.05907886 0.0
2 Exp 0.02479735 80781.2

#
v.r.ols.gdd <- variogram(ols.resid.gdd ~ 1,

locations=ne.m, cutoff=120000, width=12000)
(vmf.r.ols.gdd <- fit.variogram(v.r.ols.gdd,

vgm(psill=0.12, model="Exp",
range=20000, nugget=0.02)))

model psill range
1 Nug 0.06167406 0.00
2 Exp 0.05216480 14545.31

#
a common y-axis scale
ymax <- max(sum(vmf.r.ols.t[,"psill"]), sum(vmf.r.ols.gdd[,"psill"]))*1.1
p1 <- plot(v.r.ols.t, pl=T, model=vmf.r.ols.t, ylim = c(0, ymax))

162

p2 <- plot(v.r.ols.gdd, pl=T, model=vmf.r.ols.gdd, ylim = c(0, ymax))
print(p1, split=c(1,1,1,2), more=T)
print(p2, split=c(1,2,1,2), more=F)

distance

se
m

iv
ar

ia
nc

e

0.02

0.04

0.06

0.08

0.10

0.12

20000 40000 60000 80000 100000

31 186
349 516 567 691

747 795 867 927

distance

se
m

iv
ar

ia
nc

e

0.02

0.04

0.06

0.08

0.10

0.12

20000 40000 60000 80000 100000

31

186 349 516 567 691

747 795 867 927

Q47 : How strong is the local spatial dependence of the residuals from
the two trend surfaces? Do the two trend surfaces have the same residual
local spatial structure? If not, what is the difference? What does that imply
about the trend surface model and spatial structure of the variables? Jump
to A47 •

Task 142 : Use this estimated spatial dependence among the residuals to
re-fit the models with GLS. •

We estimate starting values for the proportional nugget from the variogram
fit.
require(nlme)
require(nlme)
(p.nugget <- vmf.r.ols.t[1,"psill"]/sum(vmf.r.ols.t[,"psill"]) + 0.001)

[1] 0.7053578

m.gls.t <- gls(model=t.ann.std ~ sqrt(ELEVATION_) + N + E,
data=ne.m,
correlation=corExp(

value=c(vmf.r.ols.t[2,"range"], p.nugget),
form=~E + N,
nugget=TRUE))

#
(p.nugget <- vmf.r.ols.gdd[1,"psill"]/sum(vmf.r.ols.gdd[,"psill"]) + 0.001)

[1] 0.5427663

m.gls.gdd <- gls(model=gdd50.std ~ sqrt(ELEVATION_) + N + E,

163

data=ne.m,
correlation=corExp(

value=c(vmf.r.ols.gdd[2,"range"], p.nugget),
form=~E + N,
nugget=TRUE))

summary(m.gls.t)

Generalized least squares fit by REML
Model: t.ann.std ~ sqrt(ELEVATION_) + N + E
Data: ne.m
AIC BIC logLik
159.9663 185.9161 -72.98317
##
Correlation Structure: Exponential spatial correlation
Formula: ~E + N
Parameter estimate(s):
range nugget
9.451200e+04 6.735544e-01
##
Coefficients:
Value Std.Error t-value p-value
(Intercept) 1.0352866 0.07976232 12.97964 0e+00
sqrt(ELEVATION_) -0.0510409 0.00217065 -23.51411 0e+00
N -0.0000035 0.00000027 -12.71021 0e+00
E -0.0000010 0.00000025 -4.02844 1e-04
##
Correlation:
(Intr) s(ELEV N
sqrt(ELEVATION_) -0.708
N 0.323 -0.184
E -0.232 0.246 -0.335
##
Standardized residuals:
Min Q1 Med Q3 Max
-2.46015918 -0.62877289 -0.04851122 0.67873651 2.94128997
##
Residual standard error: 0.2964007
Degrees of freedom: 305 total; 301 residual

summary(m.gls.gdd)

Generalized least squares fit by REML
Model: gdd50.std ~ sqrt(ELEVATION_) + N + E
Data: ne.m
AIC BIC logLik
274.5262 300.476 -130.2631
##
Correlation Structure: Exponential spatial correlation
Formula: ~E + N
Parameter estimate(s):
range nugget
7.741961e+04 6.175653e-01
##
Coefficients:
Value Std.Error t-value p-value
(Intercept) 1.2724192 0.09520248 13.365400 0e+00
sqrt(ELEVATION_) -0.0579702 0.00265657 -21.821480 0e+00
N -0.0000027 0.00000033 -8.161348 0e+00
E -0.0000011 0.00000030 -3.696353 3e-04
##
Correlation:
(Intr) s(ELEV N
sqrt(ELEVATION_) -0.734
N 0.333 -0.188
E -0.246 0.254 -0.346
##
Standardized residuals:
Min Q1 Med Q3 Max
-2.847476935 -0.591834392 0.001698496 0.684143298 2.811395719

164

##
Residual standard error: 0.3611266
Degrees of freedom: 305 total; 301 residual

Task 143 : Compare the model coefficients. •
coefficients(m.gls.t)

(Intercept) sqrt(ELEVATION_) N E
1.035287e+00 -5.104088e-02 -3.489755e-06 -1.018102e-06

coefficients(m.gls.gdd)

(Intercept) sqrt(ELEVATION_) N E
1.272419e+00 -5.797018e-02 -2.688525e-06 -1.117387e-06

coefficients(m.gls.t)/coefficients(m.gls.gdd)

(Intercept) sqrt(ELEVATION_) N E
0.8136364 0.8804679 1.2980184 0.9111453

This shows the ratio of the coefficients for the two variables. If they would
have the same regional spatial structure (trend surface), these values would
all be 1.

Task 144 : Compare the correlation structures fit by REML. •
intervals(m.gls.t)$corStruct

lower est. upper
range 2.349567e+04 9.451200e+04 3.801773e+05
nugget 4.280832e-01 6.735544e-01 8.504693e-01
attr(,"label")
[1] "Correlation structure:"

intervals(m.gls.gdd)$corStruct

lower est. upper
range 1.947769e+04 7.741961e+04 3.077262e+05
nugget 4.071888e-01 6.175653e-01 7.915103e-01
attr(,"label")
[1] "Correlation structure:"

intervals(m.gls.t)$corStruct/intervals(m.gls.gdd)$corStruct

lower est. upper
range 1.206286 1.220776 1.235440
nugget 1.051314 1.090661 1.074489
attr(,"label")
[1] "Correlation structure:"

Again, all these ratios would be 1 if the structures were identical. The mean
annual temperature has proportionally longer range and higher nugget than
GDD50. The range parameters are 77–95 km, for an effective range of about
240–300 km; this is quite a bit longer than what we estimated by eye from
the residual variograms from the OLS fit.

Task 145 : Add the GLS model residuals to the spatial data frame. •

165

ne.m$gls.resid.t <- residuals(m.gls.t)
ne.m$gls.resid.gdd <- residuals(m.gls.gdd)

Task 146 : Display the fitted model of spatial correlation with the empirical
variogram of the GLS residuals. •

We first convert the correlation structure found by gls to a variogram model;
the partial sill is estimated as the variance of the residuals, adjusted for the
proportional nugget. We estimate the nugget as a proportion of this total
sill.
(p.nugget <- intervals(m.gls.t)$corStruct["nugget","est."])

[1] 0.6735544

(t.sill <- var(ne.m$gls.resid.t))

[1] 0.08065724

(vmf.r.gls.t <- vgm(psill=t.sill*(1-p.nugget), model="Exp",
range=intervals(m.gls.t)$corStruct["range","est."],
nugget=t.sill*p.nugget))

model psill range
1 Nug 0.05432704 0
2 Exp 0.02633020 94512

v.r.gls.t <- variogram(gls.resid.t ~ 1,
locations=ne.m, cutoff=120000, width=12000)

#
(p.nugget <- intervals(m.gls.gdd)$corStruct["nugget","est."])

[1] 0.6175653

(t.sill <- var(ne.m$gls.resid.gdd))

[1] 0.1226937

(vmf.r.gls.gdd <- vgm(psill=t.sill*(1-p.nugget), model="Exp",
range=intervals(m.gls.gdd)$corStruct["range","est."],
nugget=t.sill*p.nugget))

model psill range
1 Nug 0.07577136 0.00
2 Exp 0.04692231 77419.61

v.r.gls.gdd <- variogram(gls.resid.gdd ~ 1,
locations=ne.m, cutoff=120000, width=12000)

ymax <- max(sum(vmf.r.gls.t[,"psill"]), sum(vmf.r.gls.gdd[,"psill"]))*1.1
p1 <- plot(v.r.gls.t, model=vmf.r.gls.t, pl=T, ylim = c(0, ymax))
p2 <- plot(v.r.gls.gdd, model=vmf.r.gls.gdd, pl=T, ylim = c(0, ymax))
print(p1, split=c(1,1,1,2), more=T)
print(p2, split=c(1,2,1,2), more=F)

166

distance

se
m

iv
ar

ia
nc

e

0.02

0.04

0.06

0.08

0.10

0.12

20000 40000 60000 80000 100000

31 186
349 516 567 691

747 795 867 927

distance

se
m

iv
ar

ia
nc

e

0.02

0.04

0.06

0.08

0.10

0.12

20000 40000 60000 80000 100000

31

186 349 516 567 691

747 795 867 927

Task 147 : Predict over the regional grid with the GLS model and add the
result to the dataframe. •
dem.ne.m.df$pred.gls.t <- predict(m.gls.t, newdata=dem.ne.m.df)
dem.ne.m.df$pred.gls.gdd <- predict(m.gls.gdd, newdata=dem.ne.m.df)
dem.ne.m.df$diff.gls.t.gdd <-

dem.ne.m.df$pred.gls.t - dem.ne.m.df$pred.gls.gdd

Task 148 : Plot the two regional predictions on the same visual scale. •

We use a different palette from the non-standardized prediction maps, to
emphasize that these are standardized values.
(std.pred.lim <- c(min(dem.ne.m.df[,c("pred.gls.t","pred.gls.gdd")]),

max(dem.ne.m.df[,c("pred.gls.t","pred.gls.gdd")])))

[1] -3.203491 2.471781

display.prediction.map("pred.gls.t",
"Mean Annual Temperature, standardized, GLS prediction",
"GDD50", std.pred.lim, .palette="RdGy")

display.prediction.map("pred.gls.gdd",
"Annual GDD, base 50F, standardized, GLS prediction",
"GDD50", std.pred.lim, .palette="RdGy")

167

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50

−3

−2

−1

0

1

2

Mean Annual Temperature, standardized, GLS prediction

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

−3

−2

−1

0

1

2

Annual GDD, base 50F, standardized, GLS prediction

Task 149 : Compute the differences between the two GLS predictions, add
them to the data frame, summarize them, and display them as a map. •
summary(dem.ne.m.df$diff.gls.t.gdd <-

dem.ne.m.df$pred.gls.t - dem.ne.m.df$pred.gls.gdd)

168

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.376528 -0.120566 0.016410 -0.007091 0.102386 0.492284

display.difference.map("diff.gls.t.gdd",
"Difference, MAT - GDD50, standardized",
"+/- s.d.",
.palette="BrBG")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

+/− s.d.

−0.2

0.0

0.2

0.4

Difference, MAT − GDD50, standardized

Q48 : Describe the spatial distribution of the differences between the MAT
and GDD50 predictions. Jump to A48 •

Although the GLS model residuals do not have strong spatial structure, still
we can krige them to improve the maps.

Task 150 : Predict the deviations from the GLS trend surface at each
location on the grid, using Ordinary Kriging (OK) of the GLS residuals for
both standardized variables; display their summary, and display as maps. •

Recall we build variogram models of the residuals from the correlation struc-
tures found by gls.
ok.gls.resid.t <- krige(gls.resid.t ~ 1, loc=ne.m, newdata=dem.ne.m.sf,

model=vmf.r.gls.t)

[using ordinary kriging]

ok.gls.resid.gdd <- krige(gls.resid.gdd ~ 1, loc=ne.m, newdata=dem.ne.m.sf,
model=vmf.r.gls.gdd)

[using ordinary kriging]

169

dem.ne.m.df$ok.gls.resid.t <- ok.gls.resid.t$var1.pred
dem.ne.m.df$ok.gls.resid.gdd <- ok.gls.resid.gdd$var1.pred

ggplot() +
geom_point(aes(x=E, y=N, colour=ok.gls.resid.t), data=dem.ne.m.df) +
xlab("E") + ylab("N") + coord_fixed() +
ggtitle("Residuals from GLS trend surface, MAT (std)") +
scale_colour_distiller(name="T (std)", space="Lab", palette="RdBu")

ggplot() +
geom_point(aes(x=E, y=N, colour=ok.gls.resid.gdd), data=dem.ne.m.df) +
xlab("E") + ylab("N") + coord_fixed() +
ggtitle("Residuals from GLS trend surface, GDD base 50F (std)") +
scale_colour_distiller(name="GDD50 (std)", space="Lab", palette="RdBu")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

T (std)

−0.2

0.0

0.2

Residuals from GLS trend surface, MAT (std)

170

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50 (std)

−0.4

−0.2

0.0

0.2

0.4

Residuals from GLS trend surface, GDD base 50F (std)

Task 151 : Display the differences in the OK of the standardized residuals.
•

This shows where each variable is more or less adjusted.
summary(dem.ne.m.df$ok.gls.resid.diff.t.gdd <-

dem.ne.m.df$ok.gls.resid.t - dem.ne.m.df$ok.gls.resid.gdd)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.297577 -0.044848 0.020110 0.009595 0.065114 0.273665

display.difference.map("ok.gls.resid.diff.t.gdd",
"Difference: kriged residuals from GLS trend surface",
"+/- s.d.",
.palette="BrBG")

171

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
+/− s.d.

−0.2

−0.1

0.0

0.1

0.2

Difference: kriged residuals from GLS trend surface

Task 152 : Add the kriged GLS residuals to the trend surfaces for a final
GLS-RK prediction. Display the two maps. •
summary(dem.ne.m.df$pred.rkgls.std.t <-

dem.ne.m.df$pred.gls.t + dem.ne.m.df$ok.gls.resid.t)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.16100 -0.89334 -0.20840 -0.08172 0.65080 2.50018

summary(dem.ne.m.df$pred.rkgls.std.gdd <-
dem.ne.m.df$pred.gls.gdd + dem.ne.m.df$ok.gls.resid.gdd)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.16605 -0.87200 -0.23809 -0.08422 0.53944 2.51504

display.prediction.map("pred.rkgls.std.t",
"GLS-RK prediction, Mean Annual Temperature, standardized",
"MAAT (std)", std.pred.lim, .palette="YlOrBr")

display.prediction.map("pred.rkgls.std.gdd",
"GLS-RK prediction, Annual GDD, base 50F, standardized",
"GDD50 (std)", std.pred.lim, .palette="YlOrBr")

172

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N
GDD50

−3

−2

−1

0

1

2

GLS−RK prediction, Mean Annual Temperature, standardized

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

−3

−2

−1

0

1

2

GLS−RK prediction, Annual GDD, base 50F, standardized

Task 153 : Compute and display the difference between the two GLS-RK
predictions. •
#
summary(dem.ne.m.df$diff.rkgls.std.t.gdd <-

(dem.ne.m.df$pred.rkgls.std.t - dem.ne.m.df$pred.rkgls.std.gdd))

173

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.462388 -0.120160 0.037457 0.002504 0.124340 0.477189

display.difference.map("diff.rkgls.std.t.gdd",
"GLS-RK predictions, difference, MAT - GDD50, standardized",
"+/- s.d.",
.palette="BrBG")

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

+/− s.d.

−0.25

0.00

0.25

GLS−RK predictions, difference, MAT − GDD50, standardized

There is a considerable difference between the two normalized variables.
Normalized MAT is higher than normalized GDD50 in the Appalachian,
Taconic and Allegheny mountains, and on eastern Long Island; the reverse
is the case in Adirondacks and Green Mountains, and especially in the Lake
Champlain valley. To the north, the mean annual temperature is lowered by
the very cold winter months. If the comparison were with growing season
mean temperature, perhaps the results would be more similar.

13.5 Comparing variables with Random Forests

Another way to compare the variables is with their RF models. This does
not show linear model coefficients or local spatial correlation structure, but
does show variable importance, and also produces two maps.

Task 154 : Build RF models of the two normalized variables. •
require(randomForest)
m.rf.std.t <- randomForest(t.ann.std ~ ELEVATION_ + N + E + dist.lakes + dist.coast,

data=ne.df, ntree=1200,
importance=TRUE)

m.rf.std.gdd <- randomForest(gdd50.std ~ ELEVATION_ + N + E,
data=ne.df, ntree=1200,
importance=TRUE)

174

Task 155 : Compare the variable importance of the two models. •

We use the importance function of the randomForest package:
randomForest::importance(m.rf.std.t)

%IncMSE IncNodePurity
ELEVATION_ 44.40325 58.15060
N 45.70317 80.86923
E 44.97693 36.19765
dist.lakes 38.95843 65.83409
dist.coast 29.96851 56.13357

randomForest::importance(m.rf.std.gdd)

%IncMSE IncNodePurity
ELEVATION_ 71.93775 120.02959
N 82.20071 130.47469
E 55.55530 45.31475

The Northing is more influential in the MAT model than in the GDD50
model, whereas the elevation is slightly more influential in the GDD50 model.
This agrees with the results of the GLS model (§13.4), where the absolute
Northing coefficient was larger for the MAT model, and the absolute eleva-
tion coefficient larger for the GDD50 model.

Task 156 : Plot the two fits, and the two OOB fits, side-by-side. •
plot(t.ann.std ~ predict(m.rf.std.t, newdata=ne.m),

col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by random forest", ylab="Actual",
main="Mean Annual T (std)")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid(); abline(0,1)
plot(gdd50.std ~ predict(m.rf.std.t, newdata=ne.m),

col=ne.m$STATE, pch=20, asp=1,
xlab="Fitted by random forest", ylab="Actual",
main="Annual GDD50 (std)")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid(); abline(0,1)
plot(t.ann.std ~ predict(m.rf.std.t), col=ne.m$STATE, pch=20, asp=1,

xlab="Fitted by random forest (OOB)", ylab="Actual",
main="Mean Annual T (std)")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid(); abline(0,1)
plot(gdd50.std ~ predict(m.rf.std.t), col=ne.m$STATE, pch=20, asp=1,

xlab="Fitted by random forest (OOB)", ylab="Actual",
main="Annual GDD50 (std)")

legend("topleft", levels(ne.m$STATE), pch=20, col=1:4)
grid(); abline(0,1)

175

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Mean Annual T (std)

Fitted by random forest

A
ct

ua
l

NJ
NY
PA
VT

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Annual GDD50 (std)

Fitted by random forest

A
ct

ua
l

NJ
NY
PA
VT

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Mean Annual T (std)

Fitted by random forest (OOB)

A
ct

ua
l

NJ
NY
PA
VT

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Annual GDD50 (std)

Fitted by random forest (OOB)

A
ct

ua
l

NJ
NY
PA
VT

There is not much difference between these. The GDD50 for Mount Mans-
field (VT) is better fit than the MAT.

Task 157 : Predict over the regional grid with both RF models, and display
the maps. •
dem.ne.m.df$pred.rf.std.t <- predict(m.rf.std.t, newdata=dem.ne.m.df)
dem.ne.m.df$pred.rf.std.gdd <- predict(m.rf.std.gdd, newdata=dem.ne.m.df)
(std.pred.lim <- c(min(dem.ne.m.df[,c("pred.rf.std.t","pred.rf.std.gdd")]),

max(dem.ne.m.df[,c("pred.rf.std.t","pred.rf.std.gdd")])))

[1] -2.207555 2.176656

display.prediction.map("pred.rf.std.t",
"Mean Annual Temperature, standardized, RF prediction",
"degrees C", std.pred.lim, .palette="YlOrBr")

display.prediction.map("pred.rf.std.gdd",
"Annual GDD, base 50F, standardized, RF prediction",
"GDD50", std.pred.lim, .palette="YlOrBr")

176

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

−2

−1

0

1

2

Mean Annual Temperature, standardized, RF prediction

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

GDD50

−2

−1

0

1

2

Annual GDD, base 50F, standardized, RF prediction

Task 158 : Compute the differences between the two maps and display the
difference map. •
summary(dem.ne.m.df$diff.rf.std.t.gdd <-

dem.ne.m.df$pred.rf.std.t - dem.ne.m.df$pred.rf.std.gdd)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.69765 -0.06407 0.06807 0.08525 0.21273 1.01038

display.difference.map("diff.rf.std.t.gdd",
"RF predictions, difference, MAT - GDD50, standardized",
"+/- s.d.",
.palette="BrBG")

177

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05 4e+05
E

N

+/− s.d.

−0.5

0.0

0.5

1.0

RF predictions, difference, MAT − GDD50, standardized

The summary show that half the differences between the standardized vari-
ables are quite small, about ±0.115 standard deviations. This agrees with
the close correlation between the variables.

This map shows similar differences between the variables as the GLS model
difference map (§13.4): normalized MAT is higher than normalized GDD50
in the Appalachian, Taconic and Allegheny mountains, and on eastern Long
Island; the reverse is the case in Adirondacks and Green Mountains, and
especially in the Lake Champlain valley.

14 Answers

A1 : There is an obvious regional trend in the N-S dimension: degree-days tend
to decrease going North, as shown by the smaller symbols in that direction. There
does not seem to be a consistent trend in the E-W dimension, There is also a trend
with elevation: degree-days tend to decrease as elevation increases, at the same N
latitude. Return to Q1 •

A2 :

Northing : This relation looks linear at the more southerly portions of the map (NJ and
PA except the northern tier of counties) but quite spread out, with a less
obvious relation, in the northerly portion (NY and VT, northern PA).

Easting : Note the much wider spread of GDD in the East, which ranges from southern
NJ to northern VT, than in the continental climate of the West. Easting does
not appear to be predictive of the expected value of GDD – it appears that
a linear regression would have a (near) zero slope.

ELEVATION_ : There is a clear relation (higher elevations have fewer GDD) but it appears
inverse-parabolic rather than linear.

178

Return to Q2 •

A3 : Elevation has the strongest correlation; Northing is not much weaker. The cor-
relation coefficients are both negative: GDD50 decreases with increasing Northing
and elevation. There is essentially no relation of GDD50 with Easting. Return to
Q3 •

A4 : Square root of elevation explains a bit more than half (55.6%) of the total
variation in GDD50. Return to Q4 •

A5 : In general there is a good fit: most points are near the 1:1 actual:fit line.
However two NY points (red) are poorly fit, one underfit at ≈ (1300, 1950) (fit,
actual) and one overfit at ≈ (2700, 1700). Return to Q5 •

A6 :

The model diagnostics look pretty good: (1) no relation between fits and residuals;
(2) approximately equal variance at all fitted values; (3) residuals mostly normally-
distributed; (4) the high-leverage point is consistent with the others. However
two points are severely under-predicted (positive residuals) and one severely over-
predicted (negative residual). Return to Q6
•

A7 :

There is obvious correlation, with some reasonable geographic interpretation. The
model under-predicts GDD along the Lake Erie and Ontario plains (this due to the
moderating effect of the lake) and over-predicts along the Atlantic coast, southeast-
ern VT and the northern tier of PA. The Atlantic coast may stay cooler in spring
than indicated by its very low elevation and southerly position. The model also
under-predicts in SE PA and SW NJ (the Philadelphia area) where there may be
influence from warm southerly winds. Return to Q7 •

A8 : There appears to be some structure up to ≈ 40 km. Return to Q8 •

A9 : The confidence interval of the range parameter seems quite wide, almost
double from the lower limit 1.285 × 104 to the upper limit 2.3715 × 104. Return to
Q9 •

A10 :

The range of spatial dependence has been adjusted; from the variogram fit we
estimated in §4.4, i.e., 1.2107×104; the REML estimate is somewhat longer, 1.7457×
104 m. These are 1/3 of the effective range, since we fit an exponential model. The
effective range found by gls is thus 5.2371 × 104 m. Return to Q10 •

A11 : The GLS fit does not remove spatial correlation, it just takes it into account

179

when computing the regression parameters. Return to Q11 •

A12 : This fits reasonably well; we conclude that we’ve detected the true correlation
structure of the residuals. Return to Q12 •

A13 :

The coefficients have changed a small amount; that for Northing was reduced by
over 2%. This shows that some clustered far N and far S elevation points had higher
leverage in the OLS model than the cluster warranted. Return to Q13 •

A14 : We see the effect of the reduced coefficient for Northing: the GLS predicts
somewhat lower in the N, so the residuals are lower than the OLS residuals (red
circles in the bubble plot); the reverse is true in the S. Return to Q14 •

A15 : There is quite some adjustment along the Great Lakes plain (NW) and
near some cities (additional GDD) and the Atlantic coast (lower GDD). There are
several “hotspots” of large adjustments near single climate stations. Return to
Q15 •

A16 : These areas are beyond the range of spatial correlation, here about 50 km,
and so are not affected by “nearby” observations. Return to Q16 •

A17 : Compared to the GLS surface this has more detail and is adjusted locally,
for example along the Lake Ontario plain. The discrepancies (points that can be
seen on the map) are much smaller. Return to Q17 •

A18 : Recall that the fitted variogram model shows local spatial dependence only
to an effective range of 52 km, so that there is no local adjustment further than this
from any point. Hardly any area of the bordering States or Province is within this
distance of an observation point.

The other issue is the extrapolation of the linear trend. All areas are within the
elevation range, so that is not a problem. But for areas further North or South, we
are assuming the linear trend continues unchanged. Return to Q18 •

A19 : (1) The global trend on the covariates is adequate to compute residuals and
their spatial structure; we do not expect it to change much if re-fit locally. (2) It is
not practical because the trend surface would have to be re-computed, the residuals
extracted, and the variogram re-fit at 1000’s of prediction points; this would have
to be done automatically without the possibility of checking for artefacts. In local
KED we can use the single fitted residual variogram model, while the trend is
adjusted locally and the predictions are dependent only on observations in the local
neighbourhood. The model is not changed, the results of applying it are.

Note that with very dense point networks (e.g., precision agriculture) this procedure

180

is applicable, and implemented by the VESPER computer program27 for Ordinary
Kriging, but not KED. Return to Q19 •

A20 : The largest over-predictions by local KED are extrapolations, outside the
area with points, e.g., west side of Lake Ontario, and the south-central Appalachi-
ans. Within the interpolation area, global KED is generally a bit higher, especially
in north-central PA. This may be due to a stronger Northing effect in the global
model, vs. the effect as found in local neighbourhoods. Return to Q20 •

A21 : Local KED with the 61 neighbours is considerably better: Cross-validation
RMSE is about 4% lower and the extreme errors are smaller.

This shows that both the effect of the covariates and any local effects represented by
the stations are not uniform across the area, and some form of localized prediction
is indicated. Return to Q21 •

A22 : The differences are certainly geographically-consistent. The global model
gives more positive residuals (excessively high predictions) in the southwest, Lake
Ontario plain, and far North Country of NY and VT. It gives more negative residuals
(excessively low predictions) in the east. This shows that the local fit substantially
changed the predictions. Return to Q22 •

A23 : The marginal relations are not well-fit by linear relations, although the
square root of elevation is nearly linear, as we saw in the OLS/GLS modelling.
However, in GAM modelling we do not need to select a single transformation over
the whole range of a predictor to linearize the relation. One transformation may
not be applicable to the whole range. Instead, we allow the smooth fit to determine
the local adjustment. Return to Q23 •

A24 : The model fits well; the adjusted 𝑅2 is 0.908, and the residuals are less spread
than those from the OLS and GLS models. The effective degrees of freedom, i.e.,
accounting for the many local regressions in the splines, was 23.53 for the 2D surface,
and 8.52 for the 1D relation with elevation.

Return to Q24 •

A25 : Both of these plots support the conclusion that there is no spatial dependence
of the model residuals. (1) The bubbles appear to be randomly distributed, both
in colour and size. (2) The variogram shows the same spatial correlation at all
separations. Return to Q25 •

A26 : The GAM 2D trend clearly differs from the linear trend surface, especially
in the Lake Ontario plain (towards the right centre in the figure). It is also also
higher than a linear trend in the S Hudson valley, but lower along the Atlantic shore
(upper left in the figure). These are areas we identified with large OLS and GLS
residuals in the linear trend surfaces (§4, §5). Return to Q26 •
27 https://sydney.edu.au/agriculture/pal/software/vesper.shtml

181

https://sydney.edu.au/agriculture/pal/software/vesper.shtml

A27 : This is almost linear now, as suggested by physical theory, once the smooth
geographic trend is removed. However at the low elevations there is a wide spread
of GDD50, which is well-fit by an almost vertical portion of the marginal smooth
function. Return to Q27 •

A28 : The largest differences are to the E and W, out of the calibration area –
this illustrates that GAM should not be extrapolated. The much lower GDD50 in
New England is because the GAM trend surface was considerably below the GLS
surface along the Atlantic coast, and this was extrapolated eastward. The GAM
predicts higher values along the Great Lakes plains and lower Hudson valley, as we
saw in the GLS residuals. Return to Q28 •

A29 : The largest differences are quite local, around certain weather stations
where the local deviation from the trend could be accounted for in RK-GLS, but
was somewhat averaged out in GAM. Return to Q29 •

A30 : The first (root) splitting variable is N. The split is at −1.55967× 105 N. The
mean value of GDD50 of the whole dataset is 2517.52; the mean value of the observa-
tions in the left branch (less than) is 2182.54 and of the right branch (greater than)
is3019.99. These branches have 183 and 122 observations, respectively. Return to
Q30 •

A31 : Northing is most important; it explains almost 50% of the variance. Then
elevation explains about another 40%, and Easting very little. This agrees with the
linear correlations computed as preparation for fitting the OLS model. Return to
Q31 •

A32 : Each run of the rpart function will give the same tree (if the same parameters
are specified) but slightly different cross-validation statistics. The cross-validation
error reaches an effective minimum around 15 splits, CP about 0.0045. So building
the tree with CP=0.003 was overfitting. Return to Q32 •

A33 : The pruned tree has the same root and higher levels, but fewer splits and
leaves. Return to Q33 •

A34 : There are 16 unique values predicted by the pruned regression tree. The fit
to the actual values is better the OLS or GLS models; the RMSE from the regression
tree is 11.16 GDD50; for the GLS model 12.08 In this case the linear model predicts
more values but on average they deviate more from the true values. Return to
Q34 •

A35 : The regression tree divides the area into “blocks” mostlt with the Northing
but in one place with the Easting. It also slices most of the “blocks” according to
elevation zones. These give the maximum between-group variance at the leaves of
the regression tree, without overfitting. Return to Q35 •

182

A36 : Permuting either elevation or Northing leads to a large change in the
predictions; Easting much less. Return to Q36 •

A37 : The out-of-bag mean errors are from 2 to 3 times that of the fits. This is
a typical result for random forests. The OOB errors are indicative of the errors at
unknown points, i.e., prediction accuracy. Return to Q37 •

A38 : For most runs we see no or weak residual spatial structure, because of the
averaging effect of the repeated bootstrap sampling; in many trees close point-pairs
lose one of the points. Return to Q38 •

A39 : The RF surface shows some irregular patches and abrupt transitions, whereas
the RK-GLS surface is by construction smooth. Return to Q39 •

A40 : The RF prediction is from the “box” containing the elevation (all the same
in the lake), Northing and Easting, which was fit with the most similar points.
These are presumably along the Lake shore. There is no extrapolation via a trend
surface to modify the effect of the coördinates in the model. Return to Q40 •

A41 : The GLS and GLS-RK models have coefficients for the coördinates, which
here are far East, so the predictions change. The RF does not have any information
in this area and so puts it all in the “boxes”. Return to Q41 •

A42 : There are no points in OH so the prediction by RF is made from the fitted
model of the nearby PA stations. These apparently use the Easting. Return to
Q42 •

A43 : The RF model has no way to extrapolate to higher or lower elevations than
in the calibration set. In the Alleghenies and Catskills there are a lot of higher-
elevation area beyond the elevation of weather stations. In the Adirondacks the
stations are all at low elevations, but apparently the Northing is here used to predict
the GDD. This is why the RF over-predicts in the lowlands around Plattsburgh and
Lake Champlain. Return to Q43 •

A44 : The random forest model is clearly not suitable to show a regional trend,
especially outside of the model calibration area. It does allow for non-linearities
and local combinations of factors, for example on the Lake Ontario and Erie plains.

Return to Q44 •

A45 : Slightly more variation of annual temperature is explained by the model.
Since these are both standardized, if their regional relation with the predictors is
the same, so should the coefficients. They are close but not identical. Return to
Q45 •

183

A46 : There is a clear spatial pattern and local spatial dependence. The residuals
from the MAT model are lower than those from the GDD50 model in the N and
S edges, and at the higher elevations (Adirondacks, Green Mountains, Allegheny
Plateau). The reverse is the case in the centre and especially on Long Island (NY)
and northern NJ.

Return to Q46 •

A47 :

The variogram structures are both weak (short range, very high nugget proportion).
That is, the regional trend explains most of the variation in both cases.

There is weaker residual spatial structure for mean annual temperature than for
GDD50 (lower total sill, higher nugget proportion). This implies that the MAT
trend (the predictors N, E and elevation) explains more of the spatial variability.
Note however that the MAT trend surface has a lower 𝑅2 than the GDD50 trend
surface. This implies that MAT is more explained regionally and less by local
variations than annual GDD50. Return to Q47 •

A48 : The MAT is proportionally higher than GDD50 in the higher elevations,
especially towards the SW. The opposite effect is seen in the lowlands, especially
the Lake Champlain valley (NE). Return to Q48 •

184

15 Challenge

Do a similar analysis either for:

• Over the same study area as the example:

– the growing degree days in one of the growing-season months:
May through September; or

– the annual growing degree days at base 40°F

– one of the other climate variables in one of the other shapefiles.

• Over one of the States within the study area.

• Over some other region of the USA:

– the growing degree days base 50°F, i.e., the same as used in this
example. Note that for this you will have to define a suitable
coördinate reference system (CRS) for that area.

If you choose a different study area, you will need to re-build the points
database and prediction grid, as explained in the companion tutorial “Tuto-
rial: Regional mapping of climate variables from point samples Data prepa-
ration”.

If you have to define a suitable CRS:

• For E-W oriented regions, you can uses the same Albers Equal Area
projection as was used in this tutorial, but the parameters will be
different.

• For N-S oriented regions, you will need to select a different projection.
A good choice is Transverse Mercator, PROJ.4 name tmerc. The
parameters for this are28:

+proj=tmerc +lat_0=Latitude of natural origin
+lon_0=Longitude of natural origin
+k=Scale factor at natural origin
+x_0=False Easting
+y_0=False Northing

1. Determining which covariables (elevation, Northing, Easting, their
transformations or interaction) best model the target variable;

2. Estimating the coefficients of the linear model with OLS;

3. Examining the (non-spatial) OLS model diagnostics;

4. Modelling the spatial structure of the OLS model residuals;

5. Estimating the coefficients of the linear model and the spatial correla-
tion structure (nuisance parameters) with GLS;

6. Fitting a random forest with all three predictors.
28 http://geotiff.maptools.org/proj_list/transverse_mercator.html, see the

‘PROJ.4 organization’ subheading for the names and meanings of the parameters

185

http://geotiff.maptools.org/proj_list/transverse_mercator.html

7. Mapping the various predictions and their differences.

Then answer these questions:

1. Is the linear model justified?

2. Is there spatial structure in the OLS model residuals? So, is a GLS
model needed?

3. How much do the OLS and GLS model coefficients differ?

4. What is the spatial correlation structure fitted by the GLS model?
Does this agree with that estimated from the OLS variogram?

5. How does your model compare to that developed in this exercise for
annual GDD50?

6. What could be the reason(s) for differences between the model in the
exercise and your model?

186

References
[1] D Bates. Fitting linear mixed models in R. R News, 5(1):27–30, 2005.

28

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifica-
tion and regression trees. Wadsworth, 1983. 80

[3] I. C. Briggs. Machine contouring using minimum curvature. Geophysics,
39(1):39–48, January 1974. ISSN 0016-8033, 1942-2156. doi: 10.1190/
1.1440410. 131

[4] Bradley Efron and Gail Gong. A leisurely look at the bootstrap, the
jackknife & cross-validation. American Statistician, 37:36–48, 1983. 91

[5] John C. Gallant and Trevor I. Dowling. A multiresolution index of
valley bottom flatness for mapping depositional areas. Water Re-
sources Research, 39(12):ESG4–1 – ESG4–13, Dec 2003. doi: 10.1029/
2002WR001426. 115

[6] P Goovaerts. Geostatistics for natural resources evaluation. Applied
Geostatistics. Oxford University Press, New York; Oxford, 1997. 54,
137

[7] T Hastie, R Tibshirani, and J H Friedman. The elements of statistical
learning data mining, inference, and prediction. Springer series in statis-
tics. Springer, New York, 2nd ed edition, 2009. ISBN 9780387848587.
67, 80, 90, 91, 131

[8] Tomislav Hengl, Gerard B. M. Heuvelink, and David G. Rossiter. About
regression-kriging: From equations to case studies. Computers & Geo-
sciences, 33(10):1301–1315, 2007. doi: 10.1016/j.cageo.2007.05.001. 43

[9] M. F. Hutchinson. Interpolating mean rainfall using thin plate smooth-
ing splines. International Journal of Geographical Information Science,
9(4):385 – 403, 1995. 131

[10] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
An introduction to statistical learning: with applications in R. Number
103 in Springer texts in statistics. Springer, 2013. ISBN 9781461471370.
67, 80, 90

[11] Max Kuhn. Building predictive models in R using the caret package.
Journal of Statistical Software, 28(5):1–26, 2008. 101

[12] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer,
2013 edition edition, Sep 2013. ISBN 978-1-4614-6848-6. 107

[13] R. M. Lark and B. R. Cullis. Model based analysis using REML for
inference from systematically sampled data on soil. European Journal
of Soil Science, 55(4):799–813, 2004. 26, 27

[14] Scott M. Lundberg and Su-In Lee. A Unified Approach to Interpreting
Model Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in

187

Neural Information Processing Systems 30 (Nips 2017), volume 30, La
Jolla, 2017. Neural Information Processing Systems (nips). 127

[15] G. S. McMaster and W. W. Wilhelm. Growing degree-days: one equa-
tion, two interpretations. Agricultural and Forest Meteorology, 87(4):
291–300, 1997. doi: 10.1016/S0168-1923(97)00027-0. 2

[16] H. Mitasova and J. Hofierka. Interpolation by regularized spline
with tension: II. Application to terrain modeling and surface ge-
ometry analysis. Mathematical Geology, 25(6):657–669, 1993. doi:
10.1007/BF00893172. 131

[17] H. Mitasova and L. Mitas. Interpolation by regularized spline with
tension: I. Theory and implementation. Mathematical Geology, 25(6):
641–655, 1993. doi: 10.1007/BF00893171. 131

[18] Christoph Molnar. Interpretable Machine Learning: A Guide for Mak-
ing Black Box Models Explainable. Leanpub. URL https://leanpub.
com/interpretable-machine-learning. 124

[19] J C Pinheiro and D M Bates. Mixed-effects models in S and S-PLUS.
Springer, 2000. ISBN 0387989579. 27, 28

[20] J. R Quinlan. C4.5: programs for machine learning. The Morgan
Kaufmann series in machine learning. Morgan Kaufmann Publishers,
1993. ISBN 1-55860-238-0. 107

[21] Shawn J. Riley, Stephen D. DeGloria, and Robert Eliot. A terrain
ruggedness that quantifies topographic heterogeneity. Intermountain
Journal of Sciences, 5(1–4):23–27, 1999. 116

[22] Cosma Shalizi. The bootstrap. American Scientist, 98(3):186–
190, 2010. doi: DOI:10.1511/2010.84.186. URL http://www.
americanscientist.org/issues/pub/2010/3/the-bootstrap/3. 91

[23] W. R. Tobler. A computer movie simulating urban growth in the Detroit
region. Economic Geography, 46:234–240, 1970. ISSN 0013-0095. doi:
10.2307/143141. 136

[24] R. Webster and M. A. Oliver. Geostatistics for environmental scientists.
John Wiley & Sons Ltd., 2nd edition, 2008. 54, 137

[25] Hadley Wickham. ggplot2. http://ggplot2.org/. URL http://
ggplot2.org/. 6

[26] Hadley Wickham. ggplot2: Elegant graphics for data analysis. Use R!
Springer, August 2009. ISBN 0387981403. 6

[27] Leland Wilkinson. The grammar of graphics. Statistics and computing.
Springer, New York, 2nd ed edition, 2005. ISBN 9780387286952. 6

[28] S. N. Wood. Thin plate regression splines. Journal of the Royal Sta-
tistical Society Series B-Statistical Methodology, 65:95–114, 2003. doi:
10.1111/1467-9868.00374. 131

188

https://leanpub.com/interpretable-machine-learning
https://leanpub.com/interpretable-machine-learning
http://www.americanscientist.org/issues/pub/2010/3/the-bootstrap/3
http://www.americanscientist.org/issues/pub/2010/3/the-bootstrap/3
http://ggplot2.org/
http://ggplot2.org/

[29] Marvin N. Wright and Andreas Ziegler. ranger: a fast implementation
of random forests for high dimensional data in C++ and R. Journal of
Statistical Software, 77(1):1–17, Mar 2017. doi: 10.18637/jss.v077.i01.
91

[30] Yihui Xie. knitr: Elegant, flexible and fast dynamic report generation
with R, 2011. URL http://yihui.name/knitr/. Accessed 04-Mar-
2016. 2

A * Colour ramps with ggplot2

The colour argument to the aes “aesthetics” function has a default colour
ramp.

In ggplot2 terminology this is called a a scale It maps numbers (such
as GDD50) to a scale in colour space, in the same way there is a map-
ping from numbers to a position on an axis of a scatterplot. It is a func-
tion from a domain (data values, which can be classes or continuous) to
a range (the colour for that value). This is a quite tricky – the user’s vi-
sual perception must match the change in colour. One package that has
dealt with this is RColorBrewer29, which palettes (colour choices) can be
accessed with the scale_colour_brewer function for categorical variables
and scale_colour_distiller for continuous variables. This package pro-
vides ready-made sequential, diverging, and qualitative palettes.

Task 159 : Load the RColorBrewer package and display the ready-made
palettes for continuous sequences. •
library(RColorBrewer)
display.brewer.all(type="seq")

29 http://colorbrewer2.org/

189

http://yihui.name/knitr/
http://colorbrewer2.org/

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

These should be used when the variable to display is a continuous value
from some minimum to some maximum, where increasing values indicate
increasing intensity of the variable. For example, the annual GDD50, from
low to high.

Task 160 : Select one of the palettes and re-display the GDD50 map with
it, •
ggplot(data=ne.df) +

aes(x=E, y=N) +
geom_point(aes(size=ANN_GDD50, colour=ANN_GDD50),

shape=20) +
scale_colour_distiller(space="Lab",

palette="Greens") +
xlab("E") + ylab("N") + coord_fixed()

190

−4e+05

−2e+05

0e+00

2e+05

−4e+05 −2e+05 0e+00 2e+05
E

N
ANN_GDD50

1000

2000

3000

4000

ANN_GDD50

1000

2000

3000

4000

Task 161 : Display the ready-made palettes for diverging palettes. •
display.brewer.all(type="div")

191

BrBG

PiYG

PRGn

PuOr

RdBu

RdGy

RdYlBu

RdYlGn

Spectral

These should be used when the central value is a natural zero and we want
to emphasize divergences from it in two directions, e.g., for residuals.

192

Index of Commands
+ formula operator, 81
+ operator, 6
~ formula operator, 81

add argument (plot function), 4
aes (ggplot2 package), 6, 189
apply, 153
as.data.frame, 24

block argument (krige function), 140
bnd argument (voronoi function), 148
brewer.pal (RColorBrewer package), 51

caret package, 101, 102, 108
cbind, 158
cloud argument (variogram function), 23
col argument (plot function), 4
colour argument (aes function), 6, 189
committees argument (cubist function), 112
control argument (rpart function), 85
coord_fixed (ggplot2 package), 6
cor, 12
corExp (nlme package), 28, 33
correlation argument (gls function), 28
corSpher (nlme package), 35
corStruct class, 28
cp argument (prune function), 85
cp argument (rpart function), 81, 100
crop (terra package), 148
Cubist package, 1, 107, 112
cubist (Cubist package), 112

data argument (ggplot function), 6
data.frame class, 141

eval, 19
expand.grid, 102
explain (fastshap package), 127

fastshap package, 127
fields package, 1, 131, 133, 134
fit.variogram (gstat package), 22, 55, 139
form argument (corExp function), 28
function, 39

gam (mgcv package), 69
geocode_OSM (tmaptools package), 151
geom_point (ggplot2 package), 6
geom_sf (ggplot2 package), 6

geom_smooth (ggplot2 package), 67
getModelInfo (train package), 102
getwd, 156
ggplot (ggplot2 package), 6, 39, 141
ggplot2 package, 1, 6, 51, 67, 189
gls, 166, 169
gls (nlme package), 28–30, 33, 35, 54, 179
grid.arrange (gridExtra package), 67
gridExtra package, 67
gstat package, 1, 21, 22, 45, 54, 59, 137,

144

idp argument (idw function), 145
idw (gstat package), 145
iml package, 125
importance (randomForest package), 175
importance (ranger package), 92
intervals (nlme package), 29

kml_close (plotKML package), 10
kml_layer (plotKML package), 10
kml_open (plotKML package), 10
knitr package, 2
krige (gstat package), 45, 54, 56, 61, 64,

66, 145
krige.cv (gstat package), 59, 144

labels argument (text function), 4
list.files, 156
lm, 13, 28, 65, 69
load, 3
loess, 67
log, 69
lwd argument (plot function), 4

matrix, 133
maxdist argument (krige function), 61
method argument (train function), 102, 108,

111
mgcv package, 69, 71, 72
min.node.size argument (ranger function),

102, 105
minsplit argument (rpart function), 81,

100
model argument (krige function), 45
mtry (ranger package), 92
mtry argument (randomForest function), 101
mtry argument (ranger function), 102, 105

193

neighbors argument (predict.cubist func-
tion), 112

newdata (predict package), 92
newdata argument (predict.rpart function),

88
nlme package, 1, 28, 29
nmax argument (krige function), 61, 140
nmin argument (krige function), 61
nodesize argument (randomForest function),

101
nsim argument (explain function), 127
ntree argument (randomForest function),

101
nugget argument (corExp function), 28, 33
nugget argument (corSpher function), 35
num.trees (ranger package), 91

order, 24

palette, 4
parse, 19
paste, 19
pattern argument (list.files function),

156
plot, 4
plot (terra package), 51
plot.gam (mgcv package), 71
plot.xy, 4
plot_min_depth_distribution (randomForestExplainer

package), 123
plotKML package, 1, 10
predict, 87
predict (cubist package), 112
predict (randomForest package), 92
predict (ranger package), 127
predict.gam (mgcv package), 75
predict.Krig (fields package), 134
predict.rpart (rpart package), 87
Predictor class, 125
printcp (rpart package), 84
prune (rpart package), 85

randomForest (randomForest package), 101,
105

randomForest package, 1, 175
randomForestExplainer package, 123
ranger (ranger package), 91, 93, 105
ranger package, 1, 91, 102, 106, 127
raster package, 1
RColorBrewer package, 51, 189

rpart (rpart package), 80, 81, 85, 182
rpart class, 87
rpart package, 1, 80
rpart.control (rpart package), 85
rpart.plot (rpart.plot package), 82
rpart.plot package, 82

s (mgcv package), 69
save, 3
scale_colour_brewer (ggplot2 package),

189
scale_colour_distiller (ggplot2 package),

189
scheme argument (plot.gam function), 71
se.fit argument (predict.gam function),

75
select argument (plot.gam function), 71
sf class, 4, 6, 19, 54, 149
sf package, 1, 10, 45, 148, 149, 152
sfc_POINT class, 136, 151
shape argument (geom_point function), 6
shapviz (shapviz package), 128
shapviz class, 128
shapviz package, 128
size argument (aes function), 6
sp package, 134
span argument (loess function), 67
SpatRaster class, 50
SpatVect class, 148
SpatVector class, 148
spsample (sp package), 134
sqrt, 69
st_cast (sf package), 4
st_distance (` package), 152
st_geometry (sf package), 4
st_join (sf package), 149
st_point (sf package), 136, 151
st_sfc (m package), 136
st_sfc (sf package), 151
st_transform (sf package), 10
sv_dependence (shapviz package), 129
sv_importance (shapviz package), 128

terra package, 50, 51
text, 4
theta argument (plot.gam function), 71
tmaptools package, 151
Tps (fields package), 133
train (caret package), 102, 105, 108

194

trainControl (caret package), 102
trControl argument (train function), 102
tuneGrid argument (train function), 102

unique, 88

value argument (corExp function), 28
value argument (corSpher function), 35
variogram (gstat package), 21, 23, 54, 137
verbose argument (load function), 3
vgm (gstat package), 32, 55, 139
vis.gam (mgcv package), 72
voronoi (terra package), 148

which.max, 16
which.min, 16, 153

x argument (train function), 102
xlab argument (ggplot2 function), 6

y argument (train function), 102
ylab argument (ggplot2 function), 6

195

	1 Introduction
	2 Example dataset
	3 Data exploration
	3.1 Feature-space summary
	3.2 Station locations
	3.3 Postplots
	3.4 * Viewing in geographic context

	4 Trend surface: a linear model solved by Ordinary Least Squares
	4.1 Exploring the relation between predictors and predictand
	4.2 OLS fit to the linear model
	4.3 Data cleaning
	4.4 Spatial correlation of OLS model residuals
	4.4.1 The empirical variogram
	4.4.2 Fitting an authorized variogram model

	4.5 * Close-range anomalies

	5 Trend surface: a linear model fit by Generalized Least Squares
	5.1 * GLS – theory
	5.2 GLS – practice
	5.3 Spatial correlation of GLS model residuals
	5.4 * Fitting a GLS correlation structure with a nugget variance
	5.5 Comparing OLS and GLS models

	6 Prediction over the regional grid by OLS and GLS
	7 Improving the trend prediction by Regression Kriging
	7.1 * The Ordinary Kriging system
	7.2 Predicting the residuals by Ordinary Kriging
	7.3 The GLS-Regression Kriging prediction
	7.4 Area of Applicability

	8 Kriging with external drift (KED)
	8.1 * The Universal Kriging system
	8.2 Computing the empirical residual variogram
	8.3 Fitting the residual variogram model
	8.4 Predicting with KED
	8.5 Accuracy assessment
	8.6 KED in a local neighbourhood
	8.7 * Demonstration that KED uses GLS to determine the trend

	9 Generalized Additive Models
	9.1 Fitting a Generalized Additive Model
	9.2 GAM prediction over the study area

	10 Data-driven models
	10.1 Regression trees
	10.1.1 Fitting a regression tree model
	10.1.2 Regression tree prediction over the study area

	10.2 Random forests
	10.2.1 Fitting a Random Forest model
	10.2.2 Random Forest prediction over the study area

	10.3 Tuning data-driven models
	10.4 Cubist
	10.5 Additional covariables
	10.6 Models with the extended set of predictors
	10.6.1 Relation among predictors
	10.6.2 Random forest with additional covariables
	10.6.3 Variable importance in the extended model

	10.7 Shapley values
	10.7.1 *Theory
	10.7.2 Practice
	10.7.3 Shapley Additive exPlanations (SHAP)

	10.8 Extended vs. base model

	11 Thin-plate spline interpolation
	11.1 * Theory
	11.2 Practice

	12 Local interpolators
	12.1 Computing the empirical variogram
	12.2 Fitting an authorized variogram model
	12.3 Predicting by Ordinary Kriging
	12.3.1 Accuracy assessment

	12.4 Inverse-distance interpolation
	12.5 Thiessen polygons
	12.5.1 Accuracy assessment

	13 Comparing the spatial patterns of two climate variables
	13.1 Choose a variable to compare with annual GDD50
	13.2 Add the variable to compare
	13.3 Standardize variables for comparison
	13.4 Comparing variables with RK-GLS
	13.5 Comparing variables with Random Forests

	14 Answers
	15 Challenge
	References
	A * Colour ramps with ggplot2
	Index of R concepts

