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What we know

• One or more attributes have been measured at a set of
“point” locations with defined coördinates in geographic
space.

• 0-dimensional “point” actually has some spatial extent, its
support

• pH, organic C etc. in soil sample from an auger: 4 cm
diameter (2D) + 10 cm length (3D)

• biomass from vegetation plot 10 x 10 m (2D)
• temperature, precipitation, relative humidity at a weather

station (“point” instrument but variable is the same over
some radius)

• The coördinates could also be or include time.
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Example set of “point” observations

Atteia, O., Dubois, J. P., & Webster, R. (1994). Geostatistical analysis of soil
contamination in the Swiss Jura. Environmental Pollution, 86(3), 315–327.
https://doi.org/10.1016/0269-7491(94)90172-4

https://doi.org/10.1016/0269-7491(94)90172-4
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KML file in Google Earth
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Observed values of an attribute at “points”

Soil samples, Swiss Jura

Pb (mg kg−1); symbol size proportional to value
E (km)

N
 (
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18.68
30.112
34.64
37.68
41.656
46.8
51.528
56.4
65.36
82.432
300

Support: 5 cm diameter tube, 0-25 cm depth
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What we want to know (1)

• The value of the attributes at other (unvisited) “point”
locations, either . . .

• with the same support as the original observations, or . . .
• . . . with some other support, usually larger (“block”)

• This requires spatial prediction based on the observed
“point” observations
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What is the value at this “point”?

With the same support as the observations.
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What is the value over this block?

Mean, maximum, standard deviation . . .
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What we want to know (2)

• The values of the attributes over a grid of other “point”
locations → a map of the attributes

• predict at point support at centre of grid, or . . .
• . . . predict as grid support, i.e., average over the grid cell,

or . . .
• . . . predict as a continous surface which can be queried at

any location

• Again, spatial prediction based on the observed “point”
observations
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“Point” predictions at centres of (50m)2 grid
cells

KED predictions

Co (ppm)
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This prediction method also provides a prediction variance
(uncertainty measure)
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Discrete vs. Continuous predictions

• Points: prediction at single locations (with some support)
• discrete; can be any set of points, also on a regular grid
• identified by coördinates in as many dimensions as the

object (can be in space, time or both)

• Surfaces: conceptually, a continuous, smooth prediction;
can be examined anywhere

• often presented as a regular grid, but must be able to
compute at any location given by coördinates

• 1-D: lines, 2-D: surfaces; 3-D volumes or 2-D+time,
3-D+time
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Spatial prediction

• Two objectives: (1) practical and (2) scientific
• Objective 1 (practical): Given a set of attribute values at

known points, predict the value of that attribute:
• at other “points”,
• over a block (area),
• or over a surface.
• Preferably with the uncertainty of the prediction.

• Objective 2 (scientific): Understand why the attribute has
its spatial distribution.

• These may require different methods
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Spatial modelling vs. spatial mapping

Modelling A conceptual and statistical representation of
the geographic distribution of the
observations

• conceptual: what geographic factors
determine the geographic distribution?

• statistical: how are these represented in
computation?

Mapping Using the statistical model to predict at unknown
locations, typically regular-spaced across the
study area
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A taxonomy of spatial prediction methods

Strata: divide area to be mapped into ‘homogeneous’
strata; predict within each stratum from all
observations in that stratum.

Global: (or “regional”) predictors: use all observations
to build a model that allows to predict at all
points or over a surface.

Local: predictors: use only ‘nearby’ observations to
predict at each point.

Mixed: predictors: some of structure is explained by
strata or globally, the residuals from this are
explained locally

These are discussed in detail, below.
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Universal model of spatial variation

Z(s) = Z∗(s)+ ε(s)+ ε′(s) (1)

(s) a location in space, designated by a vector of
coördinates(1D, 2D, 3D)

Z(s) true (unknown) value of some property at the
location

Z∗(s) deterministic component, due to a
non-stochastic process

ε(s) spatially-autocorrelated stochastic component

ε′(s) pure (“white”) noise, no structure

These components each require a model

adapted from: Matheron, G. (1969). Le krigeage universel. École nationale
supérieure des mines de Paris; Cahiers du Centre de morphologie
mathématique de Fontainebleau, fasc. 1.
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Spatial autocorrelation – concept

• “Auto” = “self”, i.e., an attribute correlated to itself

• “Spatial”: the correlation depends on the spatial relation
between points.

• Key idea: observations have a relation in both geographic
and feature (attribute) spaces.

• Can be applied to an attribute (observation) Z(s) or the
residuals ε(s) from some deterministic model
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A 2D geographic example

• attribute to map: elevation above sea level of the top of
an aquifer in Kansas (USA)

• observed at a large number of wells (“points”)

• Q: What determines the spatial variation? (the physical
process)

• Q: How can we model this from the observations? (using
the universal model of spatial variation)

• Q: How can we map over a regular grid covering the
region, using the model?
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The observations

Model as: Z(s) = Z∗(s)+ ε(s)+ ε′(s)
Olea, R. A., & Davis, J. C. (1999). Sampling analysis and mapping of water

levels in the High Plains aquifer of Kansas (KGS Open File Report No.

1999-11). Lawrence, Kansas: Kansas Geological Survey. Retrieved from

http://www.kgs.ku.edu/Hydro/Levels/OFR99_11/

http://www.kgs.ku.edu/Hydro/Levels/OFR99_11/
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Observation wells
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A study area
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Model these observations Z(s) by Z∗(s), ε(s), and ε′(s)?
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A deterministic trend:

Second−order trend surface

Aquifer elevation, ft
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process: dipping and slightly deformed sandstone rock: Z∗(s)
modelled with a 2nd-order polynomial trend surface
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A spatially-correlated random field

SK: residuals of 2nd order trend

Deviation from trend surface, ft
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process: local variations from trend: ε(s) (model residuals)
modelled by variogram modelling of the random field and
simple kriging
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White noise: we do not know! but assume it looks like this:

white noise

−8
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8

ε′(s)

quantified as uncertainty of the other fits
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Model with both trend and local variations

RK prediction

Aquifer elevation, ft
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Z∗(s)+ ε(s); prediction uncertainty ε′(s)
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Predictions shown on the landscape
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Mapping methods – stratification

This models only Z∗(s)+ ε′(s)
• Divide the prediction area into strata based on objectives

or pre-defined, e.g., political divisions
• The stratum defines the deterministic Z∗(s), each location

s is in exactly one stratum

• Divide the point set, each point into its stratum
• Compute appropriate statistics per-stratum based on its

points, e.g., mean, total, standard deviation . . .
• The s.d. is one measure of ε′(s)

• Present as a polygon map
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Strata

Rock types, Jura

Argovian

Kimmeridgian

Sequanian

Portlandian

Quaternary
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Observations in strata

Co concentration in topsoils, Jura
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Prediction by strata

Predicted Co concentration in topsoils, Jura

5.39

9.37

9.6

9.98

11.05

Can compute standard errors from the linear model (one-way
ANOVA).
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Mapping methods – global methods

These model only Z∗(s)+ ε′(s)
• Trend surface: one equation (linear model) using the

coördinates of all the observations as predictors
• The model can be used to map because the coördinates are

also known at each prediction location

• Multiple regression from covariates one equation (linear
model) using the attribute values of environmental
covariates as predictors

• These must be known at each prediction location, so
covariate maps must cover the prediction area

• Data-driven: machine learning, e.g., random forests,
using the atribute values of environmental covariates
and/or coördinates as predictors
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Mapping methods – local methods

These model only ε(s)+ ε′(s)
• model-based (“geostatistical”) local interpolation, e.g.,

Ordinary Kriging
• requires a model of local spatial correlation

• ad-hoc local interpolation, e.g., inverse distance
• Note: no theory, just intuition

• closest point: Thiessen polygons
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Prediction by Ordinary Kriging – at points

Predicted values, Co (ppm)
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Prediction variances by Ordinary Kriging – at
points

Kriging variance, Co (ppm^2)
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Prediction by Ordinary Kriging – at grid centres

Predicted values, Co (ppm)
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Contours calculated after surface, for visualization
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Prediction variances by Ordinary Kriging – at
grid centres

Kriging variance, Co (ppm^2)
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Mapping methods – locally-adaptive methods

These model only Z∗(s)+ ε′(s) but use locally-adaptive
functions for Z∗(s)

• Thin-plate splines (“minimum curvature”) warped
surfaces (local fitting of a trend surface)

• Geographically-weighted regression (GWR): multiple
regression from covariates, with locally-adapted
coefficients

• Generalized additive models (GAM): like multivariate
regression, but allow smooth functions of covariates as
predictors
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Prediction by thin plate splines – continuous
surface

Co concentration, mg kg−1

TPS
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Mapping methods – mixed methods

These model Z∗(s)+ ε′(s) first and then ε(s)+ ε′(s) from the
residuals of the global model

• Regression Kriging (RK) with any of the global predictors
for Z∗(s)

• Kriging with External Drift (KED), one-step method of RK

• Stratified Kriging (StK): separate geostatistical model per
stratum
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Prediction by Kriging with External Drift, rock
type as covariate

KED predictions

Co (ppm)
0
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16

KED prediction variances

Co (ppm^2)
0

2

4

6

8

10

The pattern of rock types is modified by kriging the residuals
from the linear model.
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Choosing a mapping method

• Is prediction or understanding more important?
• if prediction, may favour machine-learning or

locally-adaptive methods
• if understanding, may favour explicit models (local, global

or mixed)

• What do you know or suspect about the spatial variability
of the target attribute?

• e.g., should there be local spatial dependence?
• e.g., do we suspect a regional trend? of what form?
• e.g., are there covariates related to the target variable? do

we have maps of these?

• For prediction, try various methods and compare
evaluation statistics
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Which prediction method is “best”?

• There is no theoretical answer.

• It depends on how well the approach models the ‘true’
spatial structure, which is unknown (but we may have
prior evidence).

• The method should correspond with what we know about
the process that created the spatial structure.

• e.g., relation with environmental covariates or stratifying
factor

• It should also be achievable with the available data.
• e.g., for OK need “closely-”spaced observations, closer than

the range of spatial dependence, to take advantage of local
spatial structure ε(s)

• e.g., for RF or MLR need observations covering the
feature-space range

(continued . . . )
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Which prediction method is “best”?
(continued)

• Check against an independent evaluation (“validation”)
dataset

• Mean squared error (“precision”) of prediction vs. actual
(residuals)

• Bias (“accuracy”) of predicted vs. actual mean

• External vs. internal evaluation
• With large datasets, model with one part and hold out the

rest for validation
• For small datasets use cross-validation

• How well it reproduces the spatial variability (pattern) of
the calibration dataset

• Difficult statistical problem
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