
Model Evaluation

DGR

Assessment of
model quality

Internal
evaluation
Empirical statistical
models
Machine-learning
models
Kriging models

External
evaluation
Evaluation measures
Model efficiency
coefficient
Regression of actual
on predicted
Linn’s Concordance
Confusion matrices

Resampling

Cross-validation

Spatial patterns

Model Evaluation

D G Rossiter

Cornell University, New York State College of Agriculture & Life Sciences
School of Integrative Plant Sciences, Section of Soil & Crop Sciences

南京师范大学地理学学院

February 23, 2023



Model Evaluation

DGR

Assessment of
model quality

Internal
evaluation
Empirical statistical
models
Machine-learning
models
Kriging models

External
evaluation
Evaluation measures
Model efficiency
coefficient
Regression of actual
on predicted
Linn’s Concordance
Confusion matrices

Resampling

Cross-validation

Spatial patterns

1 Assessment of model quality

2 Internal evaluation
Empirical statistical models
Machine-learning models
Kriging models

3 External evaluation
Evaluation measures
Model efficiency coefficient
Regression of actual on predicted
Linn’s Concordance
Confusion matrices

4 Resampling

5 Cross-validation

6 Spatial patterns



Model Evaluation

DGR

Assessment of
model quality

Internal
evaluation
Empirical statistical
models
Machine-learning
models
Kriging models

External
evaluation
Evaluation measures
Model efficiency
coefficient
Regression of actual
on predicted
Linn’s Concordance
Confusion matrices

Resampling

Cross-validation

Spatial patterns

1 Assessment of model quality

2 Internal evaluation
Empirical statistical models
Machine-learning models
Kriging models

3 External evaluation
Evaluation measures
Model efficiency coefficient
Regression of actual on predicted
Linn’s Concordance
Confusion matrices

4 Resampling

5 Cross-validation

6 Spatial patterns



Model Evaluation

DGR

Assessment of
model quality

Internal
evaluation
Empirical statistical
models
Machine-learning
models
Kriging models

External
evaluation
Evaluation measures
Model efficiency
coefficient
Regression of actual
on predicted
Linn’s Concordance
Confusion matrices

Resampling

Cross-validation

Spatial patterns

Assessment of model quality

• With any predictive method, we would like to know how good
will be its predictions.
• i.e., how well is the model expected to perform on new

information?
• This is model evaluation, often called model validation.
• Contrast this with model calibration, when we are building

(fitting) the model.
• also called model training
• i.e., how well does the model fit the training information?
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Why the term “evaluation”?

• We prefer the term evaluation because “validation” implies that
the model is correct (“valid”); that of course is never the case.

• We want to evaluate how close it comes to reality and how
useful it is.

• “Evaluation” has many aspects, not just statistical.
• Oreskes, N. (1998). Evaluation (not validation) of quantitative

models. Environmental Health Perspectives, 106(Suppl 6),
1453–1460. DOI: 10.1289/ehp.98106s614531

• Oreskes, N., et al. (1994). Verification, validation, and confirmation
of numerical models in the earth sciences. Science, 263, 641–646.
DOI: 10.1126/science.263.5147.6412

1https://doi.org/10.1289/ehp.98106s61453
2https://doi.org/10.1126/science.263.5147.641

10.1289/ehp.98106s61453
10.1126/science.263.5147.641
https://doi.org/10.1289/ehp.98106s61453
https://doi.org/10.1126/science.263.5147.641
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Non-statistical aspects of model quality

• appropriate model form
• reasonable link between model form / assumptions and what is

known about the process
• fitness for use
• interpretability, communication with model users
• …
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Internal vs. external evaluation

Internal Only using the calibration/training information and
model diagnostics

External Using external information, not used in model
calibration/training

Cross-validation Simulating external assessment with the same
dataset used for model building
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Internal evaluation: fit to calibration set

• How well does the calibrated model reproduce the calibration
set?

• This is called the goodness-of-fit to the calibration data set.
• e.g., for Linear models: coefficient of determination R2

• Adding parameters to a model increases its fit; are we fitting
noise rather than signal? Use adjusted measures, e.g. adjusted
R2 or Akaike Information Criterion (AIC)

• 1:1 scatterplot of actual vs. fit, compute
• no protection against over-fitting
• no evaluation of the model form
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Internal evaluation of empirical-statistical models

• e.g., (multiple) linear regression
• examine modelling assumptions (model diagnostics)3

• homoscedascity, no relation between residuals and fitted values,
normally-distributed residuals …

• spatial independence of residuals (otherwise, use GLS)
• variance inflation factors of multiple predictors

• examine residuals – does the model fit equally well throughout
the range?

3Cook, R. D., & Weisberg, S. (1982). Residuals and influence in regression.
Chapman and Hall. ISBN 978-0-412-24280-9
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Non-spatial linear model diagnostics
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Spatial dependence of linear model residuals
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Is the model form justified? (1)
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Anscombe, F. J. (1973). Graphs in Statistical Analysis. American Statistician,
27(1), 17–21. https://doi.org/10.2307/2682899

https://doi.org/10.2307/2682899
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Is the model form justified? (2)
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Internal evaluation of machine-learning models

Each tree makes a separate prediction, so examine and summarize
the distribution of the predictions of individual trees
• Continuous predictions (e.g., quantile random forests)

• summarize by the standard deviation, (non-)normality …
• Categorical (class) prediction (e.g., probability classification

trees)
• summarize by maximum probability, confusion index, Shannon

entropy (see below)
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Random forest: all trees

Individual tree predictions for observation 1

log10 Zn, ppm
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Summary statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.348 2.976 3.026 3.057 3.155 3.265
So RF prediction is 3.057.
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Internal evaluation of classification models (1)

Maximum probability

• This shows how probable is the majority choice.
• Closer to 1 is better
• If too low, we can refuse to predict (the model is too uncertain)
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Crop classification from remote sensing using
random classification forest
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Internal evaluation of classification models (2)

Confusion index

This shows how well the majority choice is separated from the next
best choice:4

CI = (1− {µmax − µ(max−1})
• µmax is the probabilty of the most probable class
• µmax−1 is the probabilty of the second most probable class.

4Burrough, P. A., van Gaans, P. F. M., & Hootsmans, R. (1997). Continuous
classification in soil survey: Spatial correlation, confusion and boundaries.
Geoderma, 77(2–4), 115–135
https://doi.org/10.1016/S0016-7061(97)00018-9)

https://doi.org/10.1016/S0016-7061(97)00018-9)
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Crop classification from remote sensing using
random classification forest



Model Evaluation

DGR

Assessment of
model quality

Internal
evaluation
Empirical statistical
models
Machine-learning
models
Kriging models

External
evaluation
Evaluation measures
Model efficiency
coefficient
Regression of actual
on predicted
Linn’s Concordance
Confusion matrices

Resampling

Cross-validation

Spatial patterns

Internal evaluation of classification models (3)

Shannon entropy

A measure of overall uncertainty5

For a variable z with n classes, each of which has estimated
proportion π̂(zi):

Hz = −
n∑

i=1
π̂(zi) · lognπ̂(zi)

The reason to use base-n logarithms is that 0 represents no
uncertainty, and 1 maximum.

5Kempen, B., Brus, D. J., Heuvelink, G. B. M., & Stoorvogel, J. J. (2009).
Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial
logistic regression approach. Geoderma, 151(3–4), 311–326.
https://doi.org/10.1016/j.geoderma.2009.04.023

https://doi.org/10.1016/j.geoderma.2009.04.023
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Crop classification from remote sensing using
random classification forest
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Internal evaluation of Kriging predictions

• Because of its model structure, Kriging automatically computes
a kriging prediction variance to go with each prediction.

• This is because that variance is minimized in kriging, assuming
the model of spatial dependence is correct!
• Variogram form, variogram parameters
• OK: Assumptions of 1st and 2nd order stationarity (mean,

covariance among point-pairs)
• KED/UK: Assumptions of 2nd order stationarity (covariance

among point-pairs model residuals)
• This kriging prediction variance depends only on the point

configuration of the known points, and the model of spatial
correlation,not on the data values!
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Kriging predictions and variance at points

Predicted values, Co (ppm)
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Kriging variance, Co (ppm^2)
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Jura (CH) topsoil heavy metals – Ordinary Kriging
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Kriging predictions and variance over a grid

Predicted values, Co (ppm)
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Prediction outside the range of spatial dependence is the spatial
mean and covariance
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Numerical summaries of kriging variance

• Overall: Mean, maximum kriging prediction variance
• mean: on average, how precise is the prediction?
• maximum: what is the worst precision?

• Spatial distribution of kriging prediction variance
• Where is the prediction more or less precise?
• These can be used as optimization criteria for comparing

sampling plans, for samples to be used for Kriging
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External evaluation

• This requires an independent data set that represents the
target population
• thus we can compare model predictions with reality.

• Two types:
1 Completely separate evaluation dataset from a target

population to be evaluated
• specific to this population

2 Cross-validation using the calibration dataset, leaving parts
out or resampling
• the calibration dataset must represent the target population
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Model evaluation with an independent dataset

Compare model predictions with measured values from an
independent data set.
• This set can not be used in the calibration procedure!
• This set must be from the target population for the evaluation

statistics
• Advantages:

• objective measure of quality
• can be applied to a separate population to determine

extrapolation power of the model
• Disadvantages:

• Higher cost
• Poorer model? Not all observations can be used for modelling.
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Selecting the evaluation data set

• It must be a representative and unbiased sample of the
population for which we want these statistics.

• Two methods:
1 Completely independent

• This can be from a different population than the calibration
sample: we are testing the applicability of the fitted model for a
different target population.

2 A representative subset of the original sample.
• A random splitting of the original sample
• This evaluates the population from which the sample was drawn,

only if the original sample was unbiased
• If the original sample was taken to emphasize certain areas of

interest, the statistics do not summarize the validity in the whole
study area

• i.e., biased calibration sample → biased evaluation statistics!
• Cross-validation (see below) is often preferable
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Probability vs. non-probability sample sets

• For evaluation statistics to represent the target population, the
independent dataset must be from a probability sample6

• Otherwise, the statistics refer to a non-probability sample and
no inferences about the population can be derived

6e.g., Brus, D. J., Kempen, B., & Heuvelink, G. B. M. (2011). Sampling for
validation of digital soil maps. European Journal of Soil Science, 62, 394–407.
https://doi.org/10.1111/j.1365-2389.2011.01364.x

https://doi.org/10.1111/j.1365-2389.2011.01364.x
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Evaluation measures: residuals

• The fundamental measure: (actual - predicted = residual)
• For each evaluation observation i:

ri = (ŷi − yi)

where: ŷi is a prediction; yi is an actual (measured) value
• The entire distribution of the residuals can also be examined

(max, min, median, quantiles) to make a statement about the
model quality

• unusual individual residuals can be identified and examined – in
which cases does the model fail badly?
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Actual vs. predicted

Note 1:1 line: residual is the vertical distance to this line.
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Evaluation measures: ME

• Summarize the individual residuals into a composite measure:
what is the average deviation of predictions from reality?

• This is the mean absolute error (ME) of estimated vs. actual
mean of the evaluation dataset

ME = 1
n

n∑
i=1
(yi − ŷi)

ME = 1
n

n∑
i=1
(ri)

• closer to zero (0) is better
• Positive and negative residuals cancel each other
• This is the prediction bias
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Evaluation measures: RMSE

• Summarize the individual residuals into a composite measure:
how close on average are the predictions to reality?

RMSE =
1

n

n∑
i=1
(ŷi − yi)2

1/2

RMSE =
1

n

n∑
i=1

r2i

1/2

• lower is better
• Positive and negative residuals are equally incorrect
• This is an estimate of the average prediction error
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Relative evaluation measures

• The ME and RMSE are expressed in the original units of the
target variable, as absolute differences.

• These can be compared to criteria external to the model, i.e.,
“fitness for use”.

• These can also be compared to the evaluation dataset values:
• ME compared to the mean or median

• Scales the MPE: how signficant is the bias when compared to
the overall “level” of the variable to be predicted?

• RMSE compared to the range, inter-quartile range, or
standard deviation
• Scales the RMSE: how significant is the prediction variance when

compared to the overall variability of the dataset?
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Putting RMSE in context

• The RMSE tells us how closely the model on average predicts
to the true values

• But, is this significant in the real world?
• relative to the values of the target variable;
• relative to precision needed for an application of the model.

• Relative to target variable: RMSE as a proportion of the mean
• Relative to application: RMSE as uncertainty, e.g., deciding

whether a value is above or below a critical value
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Example: Relative to population

• Meuse heavy metals dataset: Cross-validation RMSE from OK
of log10(Zn) is 0.173.

• How does this compare to the population?
• Estimate from the sample:

> summary(log10(meuse$zinc))
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.053 2.297 2.513 2.556 2.829 3.265

> rmse <- 0.173
> rmse/mean(log10(meuse$zinc))
[1] 0.06767965

• This is about 7% of the mean value of this sample of this
population.
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Example: Regulatory threshold

• According to the Berlin Digital Environmental Atlas7, the critical
level for Zn is 150 mg kg-1; crops to be eaten by humans or
animals should not be grown in these condition.

• log10(150) = 2.177; suppose we have a RMSE of 0.173.
• So to be sure we are not in a polluted spot with 95% confidence

we should measure no more than 77 mg kg-1:
> (lower.limit <- log10(150)-(qnorm(.95)*0.173))
[1] 1.891532
> 10^(lower.limit)
[1] 77.89895

• So we may be forcing farmers out of business for no reason.

7http:
//www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.htm

http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.htm
http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.htm
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Model efficiency coefficient (MEC)
• This shows how much of the variability in the target population

is explained by the model.

1− (RMSE/SD)

• RMSE: square root of the mean-square of the residuals
• SD: standard deviation of the dataset

• MEC = 1: RMSE is 0
• MEC = 0: model explains nothing, because RMSE = SD.
• For a target dataset with low vs. high variability, the same

RMSE represents a less successful model.
• Sometimes called the Nash-Sutcliffe MEC, which refers to the

residual sum of squares of model residuals vs. total sum of
squares of the dataset:

1−
∑

i(yi − ŷi)2∑
i(yi − y)2



Model Evaluation

DGR

Assessment of
model quality

Internal
evaluation
Empirical statistical
models
Machine-learning
models
Kriging models

External
evaluation
Evaluation measures
Model efficiency
coefficient
Regression of actual
on predicted
Linn’s Concordance
Confusion matrices

Resampling

Cross-validation

Spatial patterns

Regression of actual on predicted

• We can also compute a linear regression of actual on
predicted values
• y = β0 + β1ŷ

• This shows how predictions made by the model from the
calibration set could be adjusted to fit the evaluation set.

• β0 is the bias of the fitted model; this should be 0.
• β1 is the gain of the fitted model vs. the evaluation set; this

should be 1.
• The R2 of this equation is not an evaluation measure of the

model!
• It does tell us how well the adjustment equation is able to match

the two sets.
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Visualizing actual vs. predicted

Scatterplot against 1:1 line Regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

● ●
●

●
●

●

●●
●

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Rwanda SOC lab. duplicate analyses

SOC % (loss on ignition)

S
O

C
 %

 (
W

ak
el

y−
B

la
ck

)

● forest
ag

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

● ●
●

●
●

●

●●
●

0 5 10 15 20 25 30

0
5

10
15

20
25

30

Rwanda SOC lab. duplicate analyses

Dotted line: combined soils; solid lines: separated
SOC % (loss on ignition)

S
O

C
 %

 (
W

ak
el

y−
B

la
ck

)

● forest
ag

0.956 1.037

1.093

ME, RMSE gain, bias



Model Evaluation

DGR

Assessment of
model quality

Internal
evaluation
Empirical statistical
models
Machine-learning
models
Kriging models

External
evaluation
Evaluation measures
Model efficiency
coefficient
Regression of actual
on predicted
Linn’s Concordance
Confusion matrices

Resampling

Cross-validation

Spatial patterns

Lin’s Concordance (CCC) (1)

• A measure of the deviation from the 1:1 line
• first developed to evaluate reproducibility of test procedures

that are supposed to give the same result8

• also valid to compare actual vs. predicted by any model, these
are supposed to be the same

ρc =
2ρ1,2σ1σ2

σ 2
1 + σ 2

2 + (µ1 − µ2)2

• σ1 is the standard deviation of predictions (or “model 1”)
• σ2 is the standard deviation of actual values (or “model 2”)
• rho1,2 is the Pearson’s (linear) correlation coefficient between the

predictions and actual (or the two model predictions)
• µ1, µ2 are the two means

8Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate
reproducibility. Biometrics, 45(1), 255–268.
https://www.jstor.org/stable/2532051

https://www.jstor.org/stable/2532051
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Lin’s Concordance (CCC) (2)

• The CCC includes all sources of deviation from a perfect model:
• location shift (bias) (µ1 − µ2)/

√
σ1σ2

• scale shift (slope not 1) σ1/σ2
• lack of correlation (spread) 1− ρ1,2

• if evaluation points are from a probability sample, can use the
sample estimates r1,2,S1,S2,Y1,Y2 in place of the population
statistics

• if not, CCC only refers to the evaluation set and not the
population
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Lin’s Concordance – examples
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External evaluation of classification models

• Compare predicted and actual classes in an evaluation dataset
• Should be a probability sample from an independent dataset

• Organize as a Confusion (cross-classification) matrix
• Rows: predicted class
• Columns: actual class

• Shows overall accuracy and per-class accuracy/reliability
• Information for map user (how useful is the map?) and

producer (how good was the mapping procedure?).
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Example confusion matrix

Source: SoilGrids 250 m V19 internal evaluation from WoSIS soil
profile dataset10, ISRIC
Classes are Orders of USDA Soil Taxonomy

9Hengl, T., et al. SoilGrids250m: Global gridded soil information based on
machine learning. PLOS ONE, 12(2), e0169748.
https://doi.org/10.1371/journal.pone.0169748

10https://www.isric.org/explore/wosis

https://doi.org/10.1371/journal.pone.0169748
https://www.isric.org/explore/wosis
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Notation I

Symbol Meaning Computation
X confusion matrix

→ rows [1 . . . r] are classified (“mapped”)
data
→ columns [1 . . . r] are reference (“true”)
data

r number of rows and columns of X
xij number of observations in row i, column j,

i.e. in reference class j but mapped as class i
as observed

xi+ marginal sum of row (mapped class) i
∑r

j=1 xij
x+j marginal sum of column (reference class) j

∑r
i=1 xij

n total number of observations
∑r

i=1
∑r

j=1 xij
…or

∑r
i=1 xi+

…or
∑r

j=1 x+j
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Notation II

Symbol Statistic Computation
Ci User’s ‘accuracy’, mapped class i xii/xi+

…or pii/pi+
Ci Errors of commission, mapped class i 1− Ci

Oj Producer’s ‘reliability’, reference class j xjj/x+j
…or pjj/p+j

Oj Errors of omission, reference class j 1−Oj

Ao Overall accuracy
∑r

i=1 xii/n
…or

∑r
i=1 pii

Ao Overall error 1− Ao

Brus11 uses the term “map unit purity” for Ci and “class
representation” for Oj.

11e.g., Brus, D. J., Kempen, B., & Heuvelink, G. B. M. (2011). Sampling for
validation of digital soil maps. European Journal of Soil Science, 62, 394–407.
https://doi.org/10.1111/j.1365-2389.2011.01364.x

https://doi.org/10.1111/j.1365-2389.2011.01364.x
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Example confusion matrix – with evaluation
statistics

Q: Which Order has the poorest map unit purity (user’s perspective)?
Which other Orders are most incorrectly mapped as this Order?

Q: Which Order has the poorest class representation (mapper’s
perspective)? Which other Orders are most incorrectly predicted to
be in this Order?
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Resampling

• If we don’t have an independent data set to evaluate a model,
we can use the same sample points that were used to estimate
the model to evaluate that same model.

• For geostatistical models, see next section “Cross-validation”
• Non-geostatisical: Do many times:

• Randomly split the dataset into calibration and evaluation parts.
• Build the model using only the calibration part
• Evaluate it against the evaluation part as in “independent

evaluation”, above
Then, summarize the evaluation statistics.

• Build a final model using all the observations; but report the
evaluation statistics from resampling.
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Cross-validation

• For geostatistical models, if we don’t have an independent data
set to evaluate a model, we can use the same sample points
that were used to estimate the model to validate that same
model.

• With enough points, the effect of the removed point on the
model (which was estimated using that point) is minor.
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Effect of removing an observation on the variogram
model
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Cross–validation procedure

1 Compute experimental variogram with all sample points in the
normal way; model it to get a parameterized variogram model

2 For each sample point
1 Remove the point from the sample set;
2 predict at that point using the other points and the modelled

variogram;
3 This is called leave-one-out cross-validation (LOOCV).
4 Summarize the deviations of the model from the actual point.
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Summary statistics for cross–validation (1)

Two are the same as for independent evaluation and are computed in
the same way:
• Root Mean Square Error (RMSE): lower is better
• Bias or mean error (MPE): should be 0
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Summary statistics for cross–validation (2)

Since we have variability of the cross–validation, and variability of
each prediction (i.e. kriging variance), we can compare these:
• Mean Squared Deviation Ratio (MSDR) of residuals with

kriging variance

MSDR = 1
n

n∑
i=1

{z(xi)− ẑ(xi)}2
σ̂ 2(xi)

where σ̂ 2(xi) is the kriging variance at cross-validation point xi.
• The MSDR is a measure of the variability of the

cross-validation vs. the variability of the sample set. This
ratio should be 1. If it’s higher, the kriging prediction was too
optimistic about the variability.

• The nugget has a large effect on the MSDR, since it sets a
lower limit on the kriging variance at all points.
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Summary statistics for cross–validation (3)

• Another way to summarize the variability is the median of the
Squared Deviation Ratio:

MeSDR = median
[
{z(xi)− ẑ(xi)}2

σ̂ 2(xi)

]
• If a correct model is used for kriging, MeSDR = 0.455, which is

the median of the χ2 distribution (used for the ratio of two
variances) with one degree of freedom.

• MeSDR < 0.455 → kriging overestimates the variance (possibly
because of the effects of outliers on the variogram estimator)

• MeSDR > 0.455 → kriging underestimates the variance
• Reference: Lark, R.M. 2000. A comparison of some robust

estimators of the variogram for use in soil survey. European
Journal of Soil Science 51(1): 137–157.
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Spatial distribution of cross-validation residuals

OK Cross−validation residuals

Co (ppm)
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−0.908
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0.967
5.145

actual – predicted; green are underpredictions
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Spatial patterns

For models that produce a map, we also need a spatial evaluation
• If the mapping method provides a measure of uncertainty, where

are the most uncertain areas?
• (see above: Maximum Probability, Confusion Index, Shannon

Entropy maps)
• what is the spatial pattern of the predictions?

• Do the patterns agree with geographical knowledge from other
sources?

• Is the scale of the spatial variability realistic?
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Spatial prediction pattern

Predicted sand concentration, %, 0–5 cm, ground overlay in ©Google Earth. (a)
Overview; centre ≈ −77°14� E, 41°14� N, near Jersey Shore, PA. (b) Detail; centre
≈−76°56� E, 41°33� N. Grid cells ≈ 250× 250 m
source: https://dx.doi.org/10.5194/soil-7-217-2021

https://dx.doi.org/10.5194/soil-7-217-2021
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Spatial uncertainty pattern

Relative uncertainty, Predicted sand concentration, %, 0–5 cm
source: soilgrids.org

soilgrids.org
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